A simplified NARMAX method using nonlinear input-output data

被引:0
作者
Jie CHEN Sheng FENG School of Information Science and Technology Beijing Institute of Technology Beijing ChinaChina Institute No of Second Academy China Aerospace Science and Industry Corporation Beijing China [1 ,1 ,2 ,1 ,100081 ,2 ,23 ,100854 ]
机构
关键词
System identification; Nonlinear system; ARMA models; Parameter estimation;
D O I
暂无
中图分类号
N945.14 [系统辨识];
学科分类号
071102 ;
摘要
A system identification method for nonlinear systems with unknown structure is presented using short input-output data. The method simplifies the original NARMAX method. It introduces more general model structures for nonlinear systems. The group method of data handling (GMDH) method is employed to obtain the model terms and parameters. Effectiveness of the proposed method is illustrated by a typical nonlinear system with unknown structure and deficient input-output data.
引用
收藏
页码:261 / 265
页数:5
相关论文
共 5 条
[1]   Fast approximate identification of nonlinear systems [J].
Schoukens, J ;
Nemeth, JG ;
Crama, P ;
Rolain, Y ;
Pintelon, R .
AUTOMATICA, 2003, 39 (07) :1267-1274
[2]  
Modelling and identification for highly nonlinear processes[J] . M. Boutayeb,M. Darouach,P.M. Frank.Mathematics and Computers in Simulation . 1998 (5)
[3]   A practical overview of neural networks [J].
Burke, L ;
Ignizio, JP .
JOURNAL OF INTELLIGENT MANUFACTURING, 1997, 8 (03) :157-165
[4]  
Nonlinear black-box modeling in system identification: a unified overview[J] . Automatica . 1995 (12)
[5]  
Nonlinear system identi?cation with shortage of input-output data .2 S. Feng,J. Chen,X. Tu. Proceedings of the 16th IFAC World Congress . 2005