The Nonlinear Schrdinger Equations with Combined Nonlinearities of Power-Type and Hartree-Type

被引:2
作者
Daoyuan FANG Zheng HAN Jialing DAI Department of MathematicsZhejiang UniversityHangzhou ChinaDepartment of MathematicsThe University of the PacificStocktonCA USA [1 ,1 ,2 ,1 ,310027 ,2 ,95211 ]
机构
关键词
Global well-posedness; Scattering; blowup; Morawetz estimates; Perturbation principles;
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
070104 ;
摘要
The primary goal of this paper is to present a comprehensive study of the nonlinear Schrdinger equations with combined nonlinearities of the power-type and Hartreetype.Under certain structural conditions,the authors are able to provide a complete picture of how the nonlinear Schrdinger equations with combined nonlinearities interact in the given energy space.The method used in the paper is based upon the Morawetz estimates and perturbation principles.
引用
收藏
页码:435 / 474
页数:40
相关论文
共 29 条
[1]  
The focusing energy-critical nonlinear Schrdinger equation in five and high. Killip,R,Visan,M. American Journal of Mathematics . 2010
[2]  
Perturbation theory for linear operators. Kato,T. . 1980
[3]  
Asymptotically linear solutions in H1of the2D defocusing nonlinear Schrdinger and Hartree equations. Holmer,J,Tzirakis,N. J.Hyperbolic Diff.Equ . 2010
[4]  
On the blowing up of solutions to the Cauchy problem for nonlinear Schro¨dinger equations. Glassey R T. Journal of Mathematics . 1977
[5]  
Global well-posedness, scattering and blow-up for the energycritical, focusing, non-linear Schr?dinger equation in the radial case. CE Kenig,F Merle. Inventiones Mathematicae . 2006
[6]  
Minimal-mass blowup solutions of the mass-critical NLS. Tao,T,Visan,M,Zhang,X.Y. Forum Mathematicum . 2008
[7]  
Stability of energy-critical nonlinear Schrdinger equations in high dimensions. Tao,T,Visan,M. Electron.J.Diff.Eqns . 2005
[8]  
Global well-posedness and scattering for the defocusing energy-critical non-linear Schrdinger equation in R1+4. Ryckman,E,Visan,M. American Journal of Mathematics . 2007
[9]  
Best constant in Sobolev inequality[J] . Giorgio Talenti. &nbspAnnali di Matematica Pura ed Applicata, Series 4 . 1976 (1)
[10]  
Best constant in Sobolev inequality[J] . Giorgio Talenti. &nbspAnnali di Matematica Pura ed Applicata, Series 4 . 1976 (1)