Solid polymer electrolytes in all-solid-state lithium metal batteries:From microstructures to properties

被引:4
|
作者
Zongxi Lin [1 ]
Ouwei Sheng [1 ]
Xiaohan Cai [1 ]
Dan Duan [1 ]
Ke Yue [1 ]
Jianwei Nai [1 ]
Yao Wang [1 ]
Tiefeng Liu [1 ]
Xinyong Tao [1 ]
Yujing Liu [1 ]
机构
[1] College of Materials Science and Engineering, Zhejiang University of Technology
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
暂无
中图分类号
TM912 [蓄电池]; TQ317 [高分子化合物产品];
学科分类号
0805 ; 080502 ; 0808 ;
摘要
All-solid-state lithium(Li) metal batteries(ASSLMBs) are considered one of the most promising secondary batteries due to their high theoretical capacity and high safety performance. However, low room-temperature ionic conductivity and poor interfacial stability are two key factors affecting the practical application of ASSLMBs, and our understanding of the mechanisms behind these key problems from microscopic perspective is still limited. In this review, the mechanisms and advanced characterization techniques of ASSLMBs are summarized to correlate the microstructures and properties. Firstly, we summarize the challenges faced by solid polymer electrolytes(SPEs) in ASSLMBs, such as the low roomtemperature ionic conductivity and the poor interfacial stability. Secondly, several typical improvement methods of polymer ASSLMBs are discussed, including composite SPEs, ultra-thin SPEs, SPEs surface modification and Li anode surface modification. Finally, we conclude the characterizations for correlating the microstructures and the properties of SPEs, with emphasis on the use of emerging advanced techniques(e.g., cryo-transmission electron microscopy) for in-depth analyzing ASSLMBs. The influence of the microstructures on the properties is very important. Until now, it has been difficult for us to understand the microstructures of batteries. However, some recent studies have demonstrated that we have a better understanding of the microstructures of batteries. Then we suggest that in situ characterization, nondestructive characterization and sub-angstrom resolution are the key technologies to help us further understand the batteries’ microstructures and promote the development of batteries. And potential investigations to understand the microstructures evolution and the batteries behaviors are also prospected to expect further reasonable theoretical guidance for the design of ASSLMBs with ideal performance.
引用
收藏
页码:358 / 378
页数:21
相关论文
共 50 条
  • [1] Solid polymer electrolytes in all-solid-state lithium metal batteries: From microstructures to properties
    Lin, Zongxi
    Sheng, Ouwei
    Cai, Xiaohan
    Duan, Dan
    Yue, Ke
    Nai, Jianwei
    Wang, Yao
    Liu, Tiefeng
    Tao, Xinyong
    Liu, Yujing
    JOURNAL OF ENERGY CHEMISTRY, 2023, 81 : 358 - 378
  • [2] Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries
    Yu, Qingjiang
    Jiang, Kecheng
    Yu, Cuiling
    Chen, Xianjin
    Zhang, Chuanjian
    Yao, Yi
    Jiang, Bin
    Long, Huijin
    CHINESE CHEMICAL LETTERS, 2021, 32 (09) : 2659 - 2678
  • [3] Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries
    Qingjiang Yu
    Kecheng Jiang
    Cuiling Yu
    Xianjin Chen
    Chuanjian Zhang
    Yi Yao
    Bin Jiang
    Huijin Long
    ChineseChemicalLetters, 2021, 32 (09) : 2659 - 2678
  • [4] Nitride solid-state electrolytes for all-solid-state lithium metal batteries
    Li, Weihan
    Li, Minsi
    Ren, Haoqi
    Kim, Jung Tae
    Li, Ruying
    Sham, Tsun-Kong
    Sun, Xueliang
    ENERGY & ENVIRONMENTAL SCIENCE, 2025,
  • [5] Composite solid electrolytes for all-solid-state lithium batteries
    Dirican, Mahmut
    Yan, Chaoyi
    Zhu, Pei
    Zhang, Xiangwu
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2019, 136 (27-46): : 27 - 46
  • [6] Designing composite polymer electrolytes for all-solid-state lithium batteries
    Grundish, Nicholas S.
    Goodenough, John B.
    Khani, Hadi
    CURRENT OPINION IN ELECTROCHEMISTRY, 2021, 30
  • [7] Sulfide/Polymer Composite Solid-State Electrolytes for All-Solid-State Lithium Batteries
    Liu, Sijie
    Zhou, Le
    Zhong, Tingjun
    Wu, Xin
    Neyts, Kristiaan
    ADVANCED ENERGY MATERIALS, 2024,
  • [8] Rigid-flexible coupling network solid polymer electrolytes for all-solid-state lithium metal batteries
    Wu, Jian-Chun
    Gao, Shuobin
    Li, Xiaowei
    Zhou, Haitao
    Gao, Hongquan
    Hu, Jinlong
    Fan, Zhonghui
    Liu, Yunjian
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 661 : 1025 - 1032
  • [9] Stereolithography Three-Dimensional Printing Solid Polymer Electrolytes for All-Solid-State Lithium Metal Batteries
    He, Yingjie
    Chen, Shaojie
    Nie, Lu
    Sun, Zhetao
    Wu, Xinsheng
    Liu, Wei
    NANO LETTERS, 2020, 20 (10) : 7136 - 7143
  • [10] Electronically Conductive Polymer Enhanced Solid-State Polymer Electrolytes for All-Solid-State Lithium Batteries
    Smdani, Md Gulam
    Hasan, Md Wahidul
    Razzaq, Amir Abdul
    Xing, Weibing
    ENERGIES, 2024, 17 (17)