基于模糊集理论的苹果表面阴影去除方法

被引:20
|
作者
宋怀波 [1 ]
张卫园 [1 ]
张欣欣 [1 ]
邹睿智 [1 ]
机构
[1] 西北农林科技大学机电学院
基金
国家高技术研究发展计划(863计划);
关键词
图像处理; 图像分割; 机器人; 阴影去除; 模糊集; 苹果;
D O I
暂无
中图分类号
TP391.41 []; S661.1 [苹果];
学科分类号
080203 ; 090201 ;
摘要
为了提高阴影影响下的苹果目标提取精度,该文提出了一种基于模糊集理论的苹果表面阴影去除方法。该方法将含阴影图像作为一个模糊矩阵,利用所设计的隶属函数进行图像去模糊化处理,达到图像增强的目的,进而削弱苹果表面阴影对目标分割的影响。为了验证算法的有效性,采用基于灰度阈值和基于颜色聚类2种算法对去除阴影前后的目标图像进行分割,并选用分割误差、假阳性率、假阴性率和重叠系数4项指标进行了分析比较,试验结果表明,去除阴影之后,2种分割算法所提取的苹果目标区域较去除阴影之前有了较大的提高,2种分割算法的平均分割误差分别为3.08%和3.46%,比去除阴影之前降低了20.53%和25.92%,假阳性率、假阴性率分别降低了29.79%、29.98%和21.25%、29.83%,重叠系数分别提高30.96%和24.55%。与灰度变换法去除阴影后分割的效果比较表明,该方法的平均分割误差降低了29.23%,假阳性率、假阴性率分别降低了30.97%和20.40%,重叠系数提高了26.60%;与直方图均衡化法的比较表明,分割误差降低了25.59%,假阳性率、假阴性率分别降低了22.74%和27.56%,而重叠系数提高了27.43%。这一系列数据表明,基于模糊集理论的阴影去除方法具有较好的阴影去除效果。经过去除阴影后,可以获得更高的目标分割性能,目标提取精度显著提高,表明将模糊集方法应用于苹果目标的阴影去除可以有效地提高苹果目标区域的提取精度。
引用
收藏
页码:135 / 141
页数:7
相关论文
共 21 条