THE SCHUR HARMONIC CONVEXITY FOR A CLASS OF SYMMETRIC FUNCTIONS

被引:1
作者
褚玉明
孙天川
机构
[1] DepartmentofMathematics,HuzhouTeachersCollege
关键词
symmetric function; Schur convex; Schur harmonic convex;
D O I
暂无
中图分类号
O174.13 [凸函数、凸集理论];
学科分类号
070104 ;
摘要
In this article,we prove that the symmetric function F_n*(x,r)=i1+i_ 2++i_n =r(x1i1x2i2... x_ni~n1/r is Schur harmonic convex for x∈R~n+and r∈N={1,2,3,...}.As its applications,some analytic inequalities are established.
引用
收藏
页码:1501 / 1506
页数:6
相关论文
共 50 条
[41]   Littlewood-Richardson rules for symmetric skew quasisymmetric Schur functions [J].
Bessenrodt, Christine ;
Tewari, Vasu ;
van Willigenburg, Stephanie .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 137 :179-206
[42]   Skew quasisymmetric Schur functions and noncommutative Schur functions [J].
Bessenrodt, C. ;
Luoto, K. ;
van Willigenburg, S. .
ADVANCES IN MATHEMATICS, 2011, 226 (05) :4492-4532
[43]   The Schur Geometrical Convexity of the Extended Mean Values [J].
Chu Yuming ;
Zhang Xiaoming ;
Wang Gendi .
JOURNAL OF CONVEX ANALYSIS, 2008, 15 (04) :707-718
[44]   THE RELATIONSHIP BETWEEN r-CONVEXITY AND SCHUR-CONVEXITY AND ITS APPLICATION [J].
Zhang, Tao ;
Chen, Alatancang ;
Xi, Bo-yan ;
Shi, Huan -nan .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (03) :1145-1152
[45]   The property of a new class of symmetric functions with applications [J].
Wang, Wen .
JOURNAL OF NUMBER THEORY, 2017, 178 :47-59
[46]   A Lift of the Schur and Hall-Littlewood Bases to Non-commutative Symmetric Functions [J].
Berg, Chris ;
Bergeron, Nantel ;
Saliola, Franco ;
Serrano, Luis ;
Zabrocki, Mike .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (03) :525-565
[47]   Some properties of a class of symmetric functions and its applications [J].
Sun, Mingbao ;
Chen, Nanbo ;
Li, Songhua .
MATHEMATISCHE NACHRICHTEN, 2014, 287 (13) :1530-1544
[48]   Schur functions in noncommuting variables [J].
Aliniaeifard, Farid ;
Li, Shu Xiao ;
van Willigenburg, Stephanie .
ADVANCES IN MATHEMATICS, 2022, 406
[49]   Symmetric Functions, Noncommutative Symmetric Functions, and Quasisymmetric Functions [J].
Michiel Hazewinkel .
Acta Applicandae Mathematica, 2003, 75 :55-83
[50]   Solution of an open problem for Schur convexity or concavity of the Gini mean values [J].
CHU YuMing1 & XIA WeiFeng2 1 Department of Mathematics .
Science China Mathematics, 2009, (10) :2099-2106