KERNEL ESTIMATION OF HIGHER DERIVATIVES OF DENSITY AND HAZARD RATE FUNCTION FOR TRUNCATED AND CENSORED DEPENDENT DATA

被引:0
作者
陈清平
戴永隆
机构
[1] Department of Statistics
[2] Wuhan University
[3] Wuhan
[4] China Wuhan University of Science and Technology
[5] China
[6] Zhongshan University
[7] Guangzhou
关键词
Truncated and censored data; α-mixing; strong consistency; law of iterated logarithm; mode;
D O I
暂无
中图分类号
O211.67 [期望与预测];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
<正> Based on left truncated and right censored dependent data, the estimators of higher derivatives of density function and hazard rate function are given by kernel smoothing method. When observed data exhibit α-mixing dependence, local properties including strong consistency and law of iterated logarithm are presented. Moreover, when the mode estimator is defined as the random variable that maximizes the kernel density estimator, the asymptotic normality of the mode estimator is established.
引用
收藏
页码:477 / 486
页数:10
相关论文
共 3 条
[1]  
The asymptotic distributions of kernel estimators of the mode[J] . William F. Eddy.Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete . 1982 (3)
[2]   LAWS OF THE ITERATED LOGARITHM FOR NONPARAMETRIC DENSITY ESTIMATORS [J].
HALL, P .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 56 (01) :47-61
[3]  
Nonparametric estimation in econometrics .2 Ioannides D A,Papanastassiou D P. Nonlinear Analysis, Theory Methods & Applications . 1997