A Logarithmically Improved Regularity Criterion for the Supercritical Quasi-geostrophic Equations in Besov Space

被引:0
作者
Sadek GALA [1 ]
机构
[1] Department of Mathematics, University of Mostaganem
关键词
quasi-geostrophic equations; logarithmical regularity criterion; Besov space;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper, we consider the logarithmically improved regularity criterion for the supercritical quasi-geostrophic equation in Besov spaceB,(R~2). The result shows that if θ is a weak solutions satisfiesα∫~T ‖▽θ(·, s) ‖α/α-r B/1+㏑(e+‖▽θ(·, s) ‖~2,ds < ∞ for some 0 < r < α and 0 < α < 1, then θ is regular at t = T. In view of the embedding L~2M~p  B,∞with 2 ≤ p <2 rand 0 ≤ r < 1, we r see that our result extends the results due to [20] and [31].
引用
收藏
页码:679 / 686
页数:8
相关论文
共 19 条
  • [1] Asymptotic profile of solutions to the two-dimensional dissipative quasi-geostrophic equation[J]. DONG BoQing & LIU QingQing School of Mathematical Sciences,Anhui University,Hefei 230039,China.Science China(Mathematics). 2010(10)
  • [2] Regularity Condition of Solutions to the Quasi-geostrophic Equations in Besov Spaces with Negative Indices[J]. Bao-quan Yuan School of Mathematics and Information Science, Henan Polytechnic University, Henan, 454000, China.Acta Mathematicae Applicatae Sinica(English Series). 2010(03)
  • [3] Remarks on the logarithmical regularity criterion of the supercritical surface quasi-geostrophic equation in Morrey spaces[J] . Yan Jia,Bo-Qing Dong.Applied Mathematics Letters . 2015
  • [4] Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz–Morrey spaces[J] . Sadek Gala,Maria Alessandra Ragusa,Yoshihiro Sawano,Hitoshi Tanaka.Applicable Analysis . 2014 (2)
  • [5] Logarithmically improved regularity criteria for the 3D viscous MHD equations
    Zhou, Yong
    Fan, Jishan
    [J]. FORUM MATHEMATICUM, 2012, 24 (04) : 691 - 708
  • [6] A regularity criterion for the critical and supercritical dissipative quasi-geostrophic equations
    Xiang, Zhaoyin
    [J]. APPLIED MATHEMATICS LETTERS, 2010, 23 (10) : 1286 - 1290
  • [7] Weak–strong uniqueness criteria for the critical quasi-geostrophic equation[J] . Fabien Marchand.Physica D: Nonlinear Phenomena . 2008 (10)
  • [8] Blow-up criterion of strong solutions to the Navier–Stokes equations in Besov spaces with negative indices[J] . Baoquan Yuan,Bo Zhang.Journal of Differential Equations . 2007 (1)
  • [9] H?lder continuity of solutions of supercritical dissipative hydrodynamic transport equations[J] . Peter Constantin,Jiahong Wu.Annales de l’Institut Henri Poincare / Analyse non lineaire . 2007 (1)
  • [10] Regularity of H?lder continuous solutions of the supercritical quasi-geostrophic equation[J] . Peter Constantin,Jiahong Wu.Annales de l’Institut Henri Poincare / Analyse non lineaire . 2007 (6)