Visual attention based model for target detection in large-field images

被引:0
作者
Lining Gao1
2.School of Information and Electronics
机构
基金
中国国家自然科学基金;
关键词
target detection; visual attention; salient region; classifier fusion;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
It is of great significance to rapidly detect targets in large-field remote sensing images,with limited computation resources.Employing relative achievements of visual attention in perception psychology,this paper proposes a hierarchical attention based model for target detection.Specifically,at the preattention stage,before getting salient regions,a fast computational approach is applied to build a saliency map.After that,the focus of attention(FOA) can be quickly obtained to indicate the salient objects.Then,at the attention stage,under the FOA guidance,the high-level visual features of the region of interest are extracted in parallel.Finally,at the post-attention stage,by integrating these parallel and independent visual attributes,a decision-template based classifier fusion strategy is proposed to discriminate the task-related targets from the other extracted salient objects.For comparison,experiments on ship detection are done for validating the effectiveness and feasibility of the proposed model.
引用
收藏
页码:150 / 156
页数:7
相关论文
共 7 条
  • [1] Familiarity based unified visual attention model for fast and robust object recognition[J] . Seungjin Lee,Kwanho Kim,Joo-Young Kim,Minsu Kim,Hoi-Jun Yoo.Pattern Recognition . 2009 (3)
  • [2] Modeling attention to salient proto-objects
    Walther, Dirk
    Koch, Christof
    [J]. NEURAL NETWORKS, 2006, 19 (09) : 1395 - 1407
  • [3] Selective visual attention enables learning and recognition of multiple objects in cluttered scenes[J] . Dirk Walther,Ueli Rutishauser,Christof Koch,Pietro Perona.Computer Vision and Image Understanding . 2005 (1)
  • [4] Object-based visual attention for computer vision
    Sun, YR
    Fisher, R
    [J]. ARTIFICIAL INTELLIGENCE, 2003, 146 (01) : 77 - 123
  • [5] Decision templates for multiple classifier fusion: an experimental comparison[J] . Ludmila I. Kuncheva,James C. Bezdek,Robert P.W. Duin.Pattern Recognition . 2001 (2)
  • [6] Objects and attention: the state of the art[J] . Brian J Scholl.Cognition . 2001 (1)
  • [7] Modeling visual attention via selective tuning[J] . John K. Tsotsos,Scan M. Culhane,Winky Yan Kei Wai,Yuzhong Lai,Neal Davis,Fernando Nuflo.Artificial Intelligence . 1995 (1)