CLASSIFYING WESTERN NORTH PACIFIC TROPICAL CYCLONES BY PHYSICAL INDEX SYSTEM

被引:0
作者
颜东谊
徐奎
马超
马满仓
机构
[1] StateKeyLaboratoryofHydraulicsEngineeringSimulationandSafety,TianjinUniversity
关键词
tropical cyclone; physical index; K-means clustering; Nash-Sutcliffe efficiency; inter-cluster divergence; intra-cluster cohesiveness; power dissipation index;
D O I
10.16555/j.1006-8775.2018.02.003
中图分类号
P444 [热带气象];
学科分类号
0706 ; 070601 ;
摘要
The classification of tropical cyclones(TCs) is significant to obtaining their temporal and spatial variation characteristics in the context of dramatic-changing global climate. A new TCs clustering method by using K-means clustering algorithm with nine physical indexes is proposed in the paper. Each TC is quantified into an 11-dimensional vector concerning trajectory attributes, time attributes and power attributes. Two recurving clusters(cluster A and E)and three straight-moving clusters(cluster B, C and D) are categorized from the TC best-track dataset of the western North Pacific(WNP) over the period of 1949-2013, and TCs' properties have been analyzed and compared in different aspects. The calculation results of coefficient variation(CV) and Nash-Sutcliffe efficiency(NSE) reveal a high level of intra-cluster cohesiveness and inter-cluster divergence, which means that the physical index system could serve as a feasible method of TCs classification. The clusters are then analyzed in terms of trajectory, lifespan, seasonality, trend,intensity and Power Dissipation Index(PDI). The five classified clusters show distinct features in TCs' temporal and spatial development discipline. Moreover, each cluster has its individual motion pattern, variation trend, influence region and impact degree.
引用
收藏
页码:142 / 150
页数:9
相关论文
共 12 条
[1]  
K-MEANS CLUSTERING FOR CLASSIFICATION OF THE NORTHWESTERN PACIFIC TROPICAL CYCLONE TRACKS.[J].余锦华;郑颖青;吴启树;林金凎;龚振彬;.Journal of Tropical Meteorology.2016, 02
[2]   孟加拉湾热带风暴活动路径的客观分类 [J].
林志强 ;
边巴扎西 ;
文胜军 ;
周振波 .
热带气象学报, 2013, 29 (06) :973-983
[3]   热带气旋过台湾岛引起的副中心特征分析 [J].
鲍旭炜 ;
雷小途 ;
唐碧 ;
刘建勇 .
热带气象学报, 2013, 29 (05) :717-726
[4]   影响中国的台风频数年代际变化趋势:1951-2004年 [J].
王小玲 ;
王咏梅 ;
任福民 ;
李维京 .
气候变化研究进展, 2006, (03) :135-138
[5]   China's tropical cyclone disaster risk source analysis based on the gray density clustering [J].
Zhang, L. J. ;
Zhu, H. Y. ;
Sun, X. J. .
NATURAL HAZARDS, 2014, 71 (02) :1053-1065
[6]   An Overview of the China Meteorological Administration Tropical Cyclone Database [J].
Ying, Ming ;
Zhang, Wei ;
Yu, Hui ;
Lu, Xiaoqin ;
Feng, Jingxian ;
Fan, Yongxiang ;
Zhu, Yongti ;
Chen, Dequan .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2014, 31 (02) :287-301
[7]   The Analysis of Tropical Cyclone Tracks in the Western North Pacific through Data Mining. Part I: Tropical Cyclone Recurvature [J].
Zhang, Wei ;
Leung, Yee ;
Chan, Johnny C. L. .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2013, 52 (06) :1394-1416
[8]   Pattern Classification of Typhoon Tracks Using the Fuzzy c-Means Clustering Method [J].
Kim, Hyeong-Seog ;
Kim, Joo-Hong ;
Ho, Chang-Hoi ;
Chu, Pao-Shin .
JOURNAL OF CLIMATE, 2011, 24 (02) :488-508
[9]   Characteristics of tropical cyclones in China and their impacts analysis [J].
Xiao Fengjin ;
Xiao Ziniu .
NATURAL HAZARDS, 2010, 54 (03) :827-837
[10]  
Classifying North Atlantic Tropical Cyclone Tracks by Mass Moments*.[J].Nakamura; Jennifer;Lall; Upmanu;Kushnir; Yochanan;Camargo; Suzana J.Journal of Climate.2009, 20