LONGTIME BEHAVIOR FOR THE ACTIVATOR-INHIBITOR MODEL

被引:0
|
作者
WU Jianhua(Department of Mathematics
机构
关键词
Maximal attractor; estimate of dimension; inertial manifold; activatorinhibitor model;
D O I
暂无
中图分类号
O231.2 [非线性控制系统];
学科分类号
摘要
The paper first discusses the longtime behavior of the activator-inhibitor model, the existence of the maximal attractor is given. Then using the mathematical induction and the properties of linear semigroup, the regularity result for the maximal attractor is obtained. Next, it is proved that its Hausdorff or fractal dimension is finite.Finally, further estimates are verilied by Rothe’s inequality and fractional operators, and the existence of inertial manifold is then proved.
引用
收藏
页码:285 / 291
页数:7
相关论文
共 50 条
  • [1] THE LIMIT OF EFFECTIVENESS OF THE ACTIVATOR-INHIBITOR MODEL IN HYDRA
    SHIMIZU, H
    ANDO, H
    SAWADA, Y
    DEVELOPMENT GROWTH & DIFFERENTIATION, 1983, 25 (04) : 437 - 437
  • [2] SINGULAR LIMIT OF AN ACTIVATOR-INHIBITOR TYPE MODEL
    Henry, Marie
    NETWORKS AND HETEROGENEOUS MEDIA, 2012, 7 (04) : 781 - 803
  • [3] Pattern formation in Passiflora incarnata: An activator-inhibitor model
    Bhati, Agastya P.
    Goyal, S.
    Yadav, Ram
    Sathyamurthy, N.
    JOURNAL OF BIOSCIENCES, 2021, 46 (03)
  • [4] A MATHEMATICAL ANALYSIS OF AN ACTIVATOR-INHIBITOR RHO GTPASE MODEL
    Ogesa Juma, Victor
    Dehmelt, Leif
    Portet, Stephanie
    Madzvamuse, Anotida
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2022, 9 (02): : 133 - 158
  • [5] BOUNDEDNESS AND BLOW UP FOR THE GENERAL ACTIVATOR-INHIBITOR MODEL
    李名德
    陈绍华
    秦禹春
    Acta Mathematicae Applicatae Sinica(English Series), 1995, (01) : 59 - 68
  • [6] A LOCAL ACTIVATOR-INHIBITOR MODEL OF VERTEBRATE SKIN PATTERNS
    YOUNG, DA
    MATHEMATICAL BIOSCIENCES, 1984, 72 (01) : 51 - 58
  • [7] Some properties for the solutions of a general Activator-Inhibitor model
    Chen, Shaohua
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (04) : 919 - 928
  • [8] Steady state solutions for a general activator-inhibitor model
    Chen, Shaohua
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 135 : 84 - 96
  • [9] Pattern formation in Passiflora incarnata: An activator-inhibitor model
    Agastya P. Bhati
    S. Goyal
    Ram Yadav
    N. Sathyamurthy
    Journal of Biosciences, 2021, 46
  • [10] GLOBAL EXISTENCE AND BOUNDEDNESS OF SOLUTIONS FOR A GENERAL ACTIVATOR-INHIBITOR MODEL
    Kouachi, Said
    MATEMATICKI VESNIK, 2014, 66 (03): : 274 - 282