State-Dependent Topological Invariants and Anomalous Bulk-Boundary Correspondence in Non-Hermitian Topological Systems with Generalized Inversion Symmetry

被引:0
|
作者
王晓然 [1 ]
郭翠仙 [1 ]
杜倩 [1 ]
寇谡鹏 [1 ]
机构
[1] Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Breakdown of bulk-boundary correspondence in non-Hermitian(NH) topological systems with generalized inversion symmetries is a controversial issue. The non-Bloch topological invariants determine the existence of edge states, but fail to describe the number and distribution of defective edge states in non-Hermitian topological systems. The state-dependent topological invariants, instead of a global topological invariant, are developed to accurately characterize the bulk-boundary correspondence of the NH systems, which is very different from their Hermitian counterparts. At the same time, we obtain the accurate phase diagram of the one-dimensional non-Hermitian Su–Schrieffer–Heeger model with a generalized inversion symmetry from the state-dependent topological invariants. Therefore, these results will be helpful for understanding the exotic topological properties of various non-Hermitian systems.
引用
收藏
页码:103 / 108
页数:6
相关论文
共 50 条
  • [1] State-Dependent Topological Invariants and Anomalous Bulk-Boundary Correspondence in Non-Hermitian Topological Systems with Generalized Inversion Symmetry
    Wang, Xiao-Ran
    Guo, Cui-Xian
    Du, Qian
    Kou, Su-Peng
    CHINESE PHYSICS LETTERS, 2020, 37 (11)
  • [2] Defective edge states and number-anomalous bulk-boundary correspondence in non-Hermitian topological systems
    Wang, Xiao-Ran
    Guo, Cui-Xian
    Kou, Su-Peng
    PHYSICAL REVIEW B, 2020, 101 (12)
  • [3] Generalized bulk-boundary correspondence in periodically driven non-Hermitian systems
    Ji, Xiang
    Yang, Xiaosen
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (24)
  • [4] Biorthogonal Bulk-Boundary Correspondence in Non-Hermitian Systems
    Kunst, Flore K.
    Edvardsson, Elisabet
    Budich, Jan Carl
    Bergholtz, Emil J.
    PHYSICAL REVIEW LETTERS, 2018, 121 (02)
  • [5] Defective edge states and anomalous bulk-boundary correspondence for topological insulators under non-Hermitian similarity transformation
    Wang, C.
    Wang, X-R
    Guo, C-X
    Kou, S-P
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (09):
  • [6] Bulk-boundary correspondence in a non-Hermitian system in one dimension with chiral inversion symmetry
    Jin, L.
    Song, Z.
    PHYSICAL REVIEW B, 2019, 99 (08)
  • [7] Bulk-boundary correspondence in disordered non-Hermitian systems
    Zhang, Zhi-Qiang
    Liu, Hongfang
    Liu, Haiwen
    Jiang, Hua
    Xie, X. C.
    SCIENCE BULLETIN, 2023, 68 (02) : 157 - 164
  • [8] Generalized bulk-edge correspondence for non-Hermitian topological systems
    Imura, Ken-Ichiro
    Takane, Yositake
    PHYSICAL REVIEW B, 2019, 100 (16)
  • [9] Bulk-boundary correspondence in non-Hermitian systems: stability analysis for generalized boundary conditions
    Rebekka Koch
    Jan Carl Budich
    The European Physical Journal D, 2020, 74
  • [10] Generalized bulk-boundary correspondence in non-Hermitian topolectrical circuits
    Helbig, T.
    Hofmann, T.
    Imhof, S.
    Abdelghany, M.
    Kiessling, T.
    Molenkamp, L. W.
    Lee, C. H.
    Szameit, A.
    Greiter, M.
    Thomale, R.
    NATURE PHYSICS, 2020, 16 (07) : 747 - +