Durgapal Ⅳ model considering the minimal geometric deformation approach

被引:1
作者
Francisco TelloOrtiz [1 ]
ngel Rincn [2 ]
Piyali Bhar [3 ]
YGomezLeyton [4 ]
机构
[1] Departamento de Física, Facultad de ciencias básicas, Universidad de Antofagasta
[2] Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Brasil
[3] Department of Mathematics,Government General Degree College, Singur
[4] Departamento de Física, Universidad Católica del Norte
关键词
D O I
暂无
中图分类号
P142 [理论天体物理学]; O412.1 [相对论];
学科分类号
070401 ; 070201 ;
摘要
The present article reports the study of local anisotropic effects on Durgapal's fourth model in the context of gravitational decoupling via the minimal geometric deformation approach. To achieve this, the most general equation of state relating the components of theθ-sector is imposed to obtain the decoupler function certain properties of the obtained solution, such as the behavior of the salient material content threading the stellar interior; causality and energy conditions; hydrostatic balance through the modified Tolman-Oppenheimer-Volkoff conservation equation and stability mechanism against local anisotropies using the adiabatic index; sound velocity of the pressure waves; convection factor; and the Harrison-Zeldovich-Novikov procedure, are investigated to check whether the model is physically admissible or not. Regarding the stability analysis, it is found that the model presents unstable regions when the sound speed of the pressure waves and convection factor are used in distinction with the adiabatic index and Harrison-Zeldovich-Novikov case. To produce a more realistic picture, the numerical data for some known compact objects were determined and different values of the parameterαwere considered to compare with the GR case, i.e.,α=0.
引用
收藏
页码:156 / 172
页数:17
相关论文
共 18 条
[1]   Einstein-Klein-Gordon system by gravitational decoupling [J].
Ovalle, J. ;
Casadi, R. ;
da Rocha, R. ;
Sotomayor, A. ;
Stuchlik, Z. .
EPL, 2018, 124 (02)
[2]  
The Minimal Geometric Deformation Approach: A Brief Introduction[J] . J. Ovalle,R. Casadio,A. Sotomayor,Elias C. Vagenas. Advances in High Energy Physics . 2017
[3]  
The role of exterior Weyl fluids on compact stellar structures in Randall–Sundrum gravity[J] . J Ovalle,F Linares,A Pasqua,A Sotomayor. Classical and Quantum Gravity . 2013 (17)
[4]   The Importance of Anisotropy for Relativistic Fluids with Spherical Symmetry [J].
Ivanov, B. V. .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (06) :1236-1243
[5]  
Anisotropic stars: Exact solutions[J] . Krsna Dev,Marcelo Gleiser. General Relativity and Gravitation: GRG Journal . 2002 (11)
[6]  
Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein's equations[J] . M.S.R. Delgaty,Kayll Lake. Computer Physics Communications . 1998 (2)
[7]   Local anisotropy in self-gravitating systems [J].
Herrera, L ;
Santos, NO .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1997, 286 (02) :53-130
[8]   Cracking of homogeneous self-gravitating compact objects induced by fluctuations of local anisotropy [J].
DiPrisco, A ;
Herrera, L ;
Varela, V .
GENERAL RELATIVITY AND GRAVITATION, 1997, 29 (10) :1239-1256
[9]   ANISOTROPIC SPHERES WITH VARIABLE-ENERGY DENSITY IN GENERAL-RELATIVITY [J].
GOKHROO, MK ;
MEHRA, AL .
GENERAL RELATIVITY AND GRAVITATION, 1994, 26 (01) :75-84
[10]  
General relativistic electromagnetic mass models of neutral spherically symmetric systems[J] . J. Ponce de León. General Relativity and Gravitation . 1987 (8)