Birth-death processes on trees

被引:0
作者
MA YuTao School of Mathematical Sciences Laboratory of Mathematics and Complex Systems Beijing Normal University Beijing China [100875 ]
机构
关键词
birth-death process; tree; ergodicity; Dirichlet eigenvalue;
D O I
暂无
中图分类号
O211.62 [马尔可夫过程];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider birth-death processes on a tree T and we are interested when it is regular, recurrent and ergodic (strongly, exponentially). By constructing two corresponding birth death processes on Z+, we obtain computable conditions sufficient or necessary for that (in many cases, these two conditions coincide). With the help of these constructions, we give explicit upper and lower bounds for the Dirichlet eigenvalue λ0. At last, some examples are investigated to justify our results.
引用
收藏
页码:2993 / 3004
页数:12
相关论文
共 5 条
[1]   树上生灭过程的Dirichlet特征值估计 [J].
邵井海 ;
毛永华 .
数学学报, 2007, (03) :507-516
[2]  
Analytic proof of dual variational formula for the first eigenvalue in dimension one[J]. 陈木法.Science in China,Ser.A. 1999(08)
[3]   MULTI-DIMENSIONAL Q-PROCESSES [J].
严士健 ;
陈木法 .
ChineseAnnalsofMathematics, 1986, (01) :90-110
[4]   Decay rates and cutoff for convergence and hitting times of Markov chains with countably infinite state space [J].
Martínez, S ;
Ycart, B .
ADVANCES IN APPLIED PROBABILITY, 2001, 33 (01) :188-205
[5]  
Relations entre isopérimétrie et trou spectral pour les cha?nes de Markov finies[J] . Laurent Miclo.Probability Theory and Related Fields . 1999 (4)