Analysis of Negative Correlation Learning

被引:0
作者
Liu Yong
机构
基金
中国国家自然科学基金;
关键词
negative correlation learning; mutual informa-tion; neural network ensemble;
D O I
暂无
中图分类号
TP181 [自动推理、机器学习];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes negative correlation learning for designing neural network ensembles. Negative correlation learning has been firstly analysed in terms of minimising mutual information on a regression task. By minimising the mutual information between variables extracted by two neural networks, they are forced to convey different information a-bout some features of their input. Based on the decision boundaries and correct response sets, negative correlation learning has been further studied on two pattern classification problems. The purpose of examining the decision boundaries and the correct response sets is not only to illustrate the learning behavior of negative correlation learning, but also to cast light on how to design more effective neural network ensembles. The experimental results showed the decision boundary of the trained neural network ensemble by negative correlation learning is almost as good as the optimum decision boundary.
引用
收藏
页码:165 / 175
页数:11
相关论文
empty
未找到相关数据