非对称Keyfitz-Kranzer方程组波的相互作用

被引:1
作者
李舒琪
机构
[1] 新疆大学数学与系统科学学院
关键词
Keyfitz-Kranzer方程组; 广义Chaplygin气体; 修正Chaplygin气体; Riemann问题; 激波; 接触间断;
D O I
10.13603/j.cnki.51-1621/z.2018.02.012
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
研究了广义Chaplygin气体和修正Chaplygin气体情形下非对称Keyfitz-Kranzer方程组基本波的相互作用.对于广义Chaplygin气体,其Riemann解由R+J,S+J或delta波组成,对于修正Chaplygin气体,其解是由R+J或S+J组成.考虑初始条件是三片常状态的情形,根据初始条件的不同取值范围,利用特征分析法和相平面分析法,分情况讨论了基本波的相互作用问题,构造性地得到了问题的整体解.进一步地,令参数ε趋于零,得到了Riemann问题的解关于这种初始条件的小扰动是稳定的.
引用
收藏
页码:54 / 59
页数:6
相关论文
共 7 条
[1]   A SYSTEM OF NON-STRICTLY HYPERBOLIC CONSERVATION-LAWS ARISING IN ELASTICITY THEORY [J].
KEYFITZ, BL ;
KRANZER, HC .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1980, 72 (03) :219-241
[2]  
On a Nonsymmetric Keyfitz-Kranzer System of Conservation Laws with Generalized and Modified Chaplygin Gas Pressure Law[J] . Hongjun Cheng,Hanchun Yang,Stephen C. Anco. &nbspAdvances in Mathematical Physics . 2013
[3]   广义PC方程的孤立波解 [J].
郑珊 .
内江师范学院学报, 2008, (08) :19-21
[4]  
Resurrection of ’second order’ models of traffic flow. Aw, A.,Rascle, M. SIAM Journal on Applied Mathematics . 2000
[5]  
Limit of riemann solutions to the nonsymmetric system of Keyfitz-Kranzer type. Guo L,Yin G. Scientific World . 2014
[6]  
Existence of global entropy solutions to general system of Keyfitz–Kranzer type[J] . Yun-guang Lu. &nbspJournal of Functional Analysis . 2013 (10)
[7]  
Delta shock waves for a linearly degenerate hyperbolic system of conservation laws of Keyfitz-Kranzer type. CHENG H J. Advances in Mathematical Physics . 2013