Source-Space Compressive Matched Field Processing for Source Localization

被引:0
作者
王好忠 [1 ]
王宁 [1 ]
高大治 [1 ]
高博 [1 ]
机构
[1] College of Information Science and Technology,Ocean University of China
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
of; SSC; MFP; in; Source-Space Compressive Matched Field Processing for Source Localization; for; that; is;
D O I
暂无
中图分类号
TP311.13 []; P733.2 [海洋声学];
学科分类号
082403 ; 1201 ;
摘要
Source localization by matched-field processing(MFP) can be accelerated by building a database of Green’s functions which however requires a bulk-storage memory.According to the sparsity of the source locations in the search grids of MFP,compressed sensing inspires an approach to reduce the database by introducing a sensing matrix to compress the database.Compressed sensing is further used to estimate the source locations with higher resolution by solving the l1-norm optimization problem of the compressed Green’s function and the data received by a vertical/horizontal line array.The method is validated by simulation and is verified with the experimental data.
引用
收藏
页码:64 / 67
页数:4
相关论文
共 15 条
[1]  
Lustig M,Donoho D L,Pauly J M. Magn.Reson.Med . 2007
[2]  
The KRAKEN normal mode program. Porter M. Saclantcen Memorandum,SM-245 . 1991
[3]  
Tolstoy A,Diachok O,Frazer L N. The Journal of The Acoustical Society of America . 1991
[4]  
Tolstoy A,Diachok O,Frazer L N. The Journal of The Acoustical Society of America . 1991
[5]  
Li Q Q,Li Z L,Zhang R H. Chinese Physics Letter . 2013
[6]  
Peng Z H,Li Z L,Wang G X. Chinese Physics Letter . 2010
[7]  
Baggeroer B A,Kuperman W A,Mikhalevsky P N. IEEE J.Ocean.Eng . 1993
[8]  
Acoustic Sensing Techniques for the Shallow Water Environment. Meyer M,Hermand J P. . 2006
[9]  
Candes E J,Romberg J,Tao T. IEEE Trans Inf.Theor . 2006
[10]  
Donoho D L. IEEE Transactions on Information Theory . 2006