Total Chromatic Number of the Join of Km,n and Cn

被引:0
|
作者
LI Guang-rong
机构
关键词
total coloring; total chromatic number; join graphs; cycle; complete bipartite graph;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
The total chromatic number XT(G) of a graph G is the minimum number of colors needed to color the elements (vertices and edges) of G such that no adjacent or incident pair of elements receive the same color. G is called Type 1 if XT(G)=Δ(G) + 1. In this paper we prove that the join of a complete bipartite graph Km,n and a cycle Cn is of Type 1.
引用
收藏
页码:264 / 270
页数:7
相关论文
共 50 条
  • [21] COMPUTATION OF TOTAL CHROMATIC NUMBER FOR CERTAIN CONVEX POLYTOPE GRAPHS
    Punitha, A.
    Jayaraman, G.
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2024, 42 (03): : 567 - 582
  • [22] Total-chromatic number and chromatic index of dually chordal graphs
    de Figueiredo, CMH
    Meidanis, J
    de Mello, CP
    INFORMATION PROCESSING LETTERS, 1999, 70 (03) : 147 - 152
  • [23] The hunting of a snark with total chromatic number 5
    Sasaki, D.
    Dantas, S.
    de Figueiredo, C. M. H.
    Preissmann, M.
    DISCRETE APPLIED MATHEMATICS, 2014, 164 : 470 - 481
  • [24] On local antimagic chromatic number of cycle-related join graphs II
    Lau, Gee-Choon
    Premalatha, K.
    Arumugam, S.
    Shiu, Wai Chee
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (03)
  • [25] On the total signed domination number of Pm▭Cn
    Gao, Hong
    Cao, Huiping
    Yang, Yuansheng
    ARS COMBINATORIA, 2018, 136 : 3 - 19
  • [26] The total chromatic number of split-indifference graphs
    Campos, C. N.
    de Figueiredo, C. H.
    Machado, R.
    de Mello, C. P.
    DISCRETE MATHEMATICS, 2012, 312 (17) : 2690 - 2693
  • [27] Total chromatic number for certain classes of product graphs
    Sandhiya, T. P.
    Geetha, J.
    Somasundaram, K.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (07)
  • [28] The total chromatic number of pseudo-outerplanar graphs
    Wang W.
    Zhang K.
    Applied Mathematics-A Journal of Chinese Universities, 1997, 12 (4) : 455 - 462
  • [29] Total chromatic number for some classes of Cayley graphs
    S. Prajnanaswaroopa
    J. Geetha
    K. Somasundaram
    Soft Computing, 2023, 27 : 15609 - 15617
  • [30] Total chromatic number for some classes of Cayley graphs
    Prajnanaswaroopa, S.
    Geetha, J.
    Somasundaram, K.
    SOFT COMPUTING, 2023, 27 (21) : 15609 - 15617