Representation and Adaptive Transformation of Reusable Software Components

被引:0
|
作者
Xu Zheng quan
机构
关键词
reusable software component; classification; representation; adaptability; transfer;
D O I
暂无
中图分类号
TP311.5 [软件工程];
学科分类号
081202 ; 0835 ;
摘要
The key ingredient for promoting software reuse in a repository base integrated development environment, is to provide support for the software developer who wants to search the repository to locate and retrieve suitable software components for reuse. This paper presents that reusable software components form a base to provide a flexible representation of component adaptability to any repository with a specific classification. As an alternative, it proposes to automatically identify and convert the component source code with all its information into a standard form, so that components can be transferred from one type of library to another.
引用
收藏
页码:298 / 303
页数:6
相关论文
共 50 条
  • [41] Assessment of the influence of adaptive components in trainable surface inspection systems
    Eitzinger, Christian
    Heidl, W.
    Lughofer, E.
    Raiser, S.
    Smith, J. E.
    Tahir, M. A.
    Sannen, D.
    Van Brussel, H.
    MACHINE VISION AND APPLICATIONS, 2010, 21 (05) : 613 - 626
  • [42] Adaptive Spectral-Spatial Compression of Hyperspectral Image With Sparse Representation
    Fu, Wei
    Li, Shutao
    Fang, Leyuan
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (02): : 671 - 682
  • [43] Multiscale Union Regions Adaptive Sparse Representation for Hyperspectral Image Classification
    Tong, Fei
    Tong, Hengjian
    Jiang, Junjun
    Zhang, Yun
    REMOTE SENSING, 2017, 9 (09):
  • [44] Robust Adaptive Low-Rank and Sparse Embedding for Feature Representation
    Wang, Lei
    Zhang, Zhao
    Liu, Guangcan
    Ye, Qiaolin
    Qin, Jie
    Wang, Meng
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 800 - 805
  • [45] Graph regularized adaptive joint collaborative representation for hyperspectral image classification
    Li D.-Q.
    Cheng Y.-H.
    Wang X.-S.
    Kongzhi yu Juece/Control and Decision, 2020, 35 (05): : 1063 - 1071
  • [46] ADAPTIVE SPATIAL CONSTRAINT SPARSE REPRESENTATION FOR TARGET DETECTION IN POLSAR IMAGE
    Wang, Xiao
    Zhang, Lamei
    Zhu, Sha
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3265 - 3268
  • [47] Representation and Spatially Adaptive Segmentation for PolSAR Images Based on Wedgelet Analysis
    Liu, Bin
    Zhang, Zenghui
    Liu, Xingzhao
    Yu, Wenxian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (09): : 4797 - 4809
  • [48] Adaptive Weighted Splines - A New Representation to Genetic Programming for Symbolic Regression
    Raymond, Christian
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 1003 - 1011
  • [49] Local Collaborative Representation With Adaptive Dictionary Selection for Hyperspectral Image Classification
    Zheng, Yaoguo
    Jiao, Licheng
    Shang, Ronghua
    Hou, Biao
    Zhang, Xiangrong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (10) : 1482 - 1486
  • [50] SARLBP: Scale Adaptive Robust Local Binary Patterns for Texture Representation
    Upadhyay, Parth C.
    Lory, John A.
    Desouza, Guilherme N.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2025, 34 : 969 - 981