Modulation of lattice oxygen boosts the electrochemical activity and stability of Co-free Li-rich cathodes

被引:5
|
作者
Gui-Jing Xu [1 ]
Wang Ke [1 ]
Fu-Da Yu [2 ]
Jie Feng [1 ]
Yun-Shan Jiang [1 ]
Lan-Fang Que [2 ]
Lei Zhao [1 ]
Zhen-Bo Wang [1 ,3 ]
机构
[1] MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology
[2] Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University
[3] College of Materials Science and Engineering, Shenzhen University
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TM912 [蓄电池];
学科分类号
摘要
Co-free Li-rich layered oxide cathodes have drawn much attention owing to their low cost and high energy density. Nevertheless, anion oxidation of oxygen leads to oxygen peroxidation during the first charging process, which leads to co-migration of transition metal ions and oxygen vacancies, causing structural instability. In this work, we propose a pre-activation strategy driven by chemical impregnation to modulate the chemical state of surface lattice oxygen, thus regulating the structural and electrochemical properties of the cathodes. In-situ X-ray diffraction confirms that materials based on activated oxygen configuration have higher structural stability. More importantly, this novel efficient strategy endows the cathodes having a lower surface charge transfer barrier and higher Li+transfer kinetics characteristic and ameliorates its inherent issues. The optimized cathode exhibits excellent electrochemical performance: after 300 cycles, high capacity(from 238 m Ah g-1to 193 m Ah g-1at 1 C) and low voltage attenuation(168 mV) are obtained. Overall, this modulated surface lattice oxygen strategy improves the electrochemical activity and structural stability, providing an innovative idea to obtain high-capacity Co-free Li-rich cathodes for next-generation Li-ion batteries.
引用
收藏
页码:117 / 126
页数:10
相关论文
共 50 条
  • [1] Modulation of lattice oxygen boosts the electrochemical activity and stability of Co-free Li-rich cathodes
    Xu, Gui-Jing
    Ke, Wang
    Yu, Fu-Da
    Feng, Jie
    Jiang, Yun-Shan
    Que, Lan -Fang
    Zhao, Lei
    Wang, Zhen-Bo
    JOURNAL OF ENERGY CHEMISTRY, 2022, 75 : 117 - 126
  • [2] Controls of oxygen-partial pressure to accelerate the electrochemical activation in Co-free Li-rich layered oxide cathodes
    Wen, Xiaohui
    Yin, Chong
    Qiu, Bao
    Wan, Liyang
    Zhou, Yuhuan
    Wei, Zhining
    Shi, Zhepu
    Huang, Xing
    Gu, Qingwen
    Liu, Zhaoping
    JOURNAL OF POWER SOURCES, 2022, 523
  • [3] The Effect of K-Doping on Activation in Co-Free Li-Rich Cathodes
    Seaby, Trent
    Lin, Tongen
    Huang, Xia
    Baktash, Ardeshir
    Wang, Lianzhou
    CHEMISTRY-AN ASIAN JOURNAL, 2025, 20 (06)
  • [4] Formation of Rocksalt Domains by Dual Substitution to Boost Electrochemical Capability of Co-Free Li-Rich Layered Cathodes
    Xu, Lifeng
    Chen, Shi
    Li, Ning
    Li, Yongjian
    Fang, Youyou
    Wei, Chenxi
    Chen, Lai
    Cao, Duanyun
    Lu, Yun
    Wang, Meng
    Bao, Liying
    Su, Yuefeng
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (08) : 9970 - 9979
  • [5] Engineering Reversible Lattice Structure for High-Capacity Co-Free Li-Rich Cathodes with Negligible Capacity Degradation
    Zhao, Guangxue
    Zhang, Tianran
    Wang, Ruoyu
    Zhang, Nian
    Zheng, Lirong
    Ma, Xiaobai
    Yang, Jinbo
    Liu, Xiangfeng
    SMALL, 2024, 20 (40)
  • [6] Engineering of surface oxygen vacancies in Co-free concentration-gradient Li-rich cathodes for high-capacity batteries
    Vahdatkhah, P.
    Voznyy, O.
    Sadrnezhaad, S. K.
    MATERIALS TODAY SUSTAINABILITY, 2023, 21
  • [7] Optimizing Oxygen Redox Activity by Local Chemical Disorder toward Robust Co-Free Li-Rich Cathode with High Voltage Stability
    Zheng, Hongfei
    Fan, Mengjian
    Zhang, Chenying
    He, Wei
    Gao, Guiyang
    Liu, Yuanyuan
    Wang, Laisen
    Xie, Qingshui
    Peng, Dong-Liang
    Lu, Jun
    ADVANCED MATERIALS, 2025, 37 (04)
  • [8] Effects of Fe and Li2MnO3-like domains on structural stability in Co-free Li-rich layered oxide cathodes
    Zhang, Yu
    Yan, Mingxia
    Guo, Xin
    Zhang, Xu
    Liu, Jihong
    Zhang, Jiyang
    Zhu, Jiapeng
    An, Shengli
    Jia, Guixiao
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2024, 124 (13)
  • [9] A Unique Formation Process on Rapidly Activating Oxygen Redox in Co-Free Li-Rich Layered Cathodes for Long-Cycle Batteries
    Xiong, Jiahui
    Qiu, Bao
    Huang, Zhi-Min
    Zhong, Shengwen
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (10)
  • [10] Interphase engineering toward superior structural stability of Co-free Li-rich layered oxides
    Zhang, Boyang
    Huang, Gesong
    Huang, Wenjie
    Li, Xiaola
    Huang, Wenzhao
    Liang, Ziyang
    Liu, Yuqing
    Liu, Chenyu
    Lin, Zhan
    Luo, Dong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010