The Ott-Antonsen Ansatz in Globally Coupled Phase Oscillators

被引:0
|
作者
巫年萍 [1 ]
程洪艳 [1 ]
代琼琳 [1 ]
李海红 [1 ]
机构
[1] School of Sciences,Beijing University of Posts and Telecommunications
基金
中国国家自然科学基金;
关键词
of; on; in; The Ott-Antonsen Ansatz in Globally Coupled Phase Oscillators; for; that; is; with;
D O I
暂无
中图分类号
TN752 [振荡器];
学科分类号
080904 ;
摘要
The Ott-Antonsen ansatz provides a powerful tool in investigating synchronization among coupled phase oscillators.However,previous works using the ansatz only focused on the evolution of the order parameter and the information on desynchronized oscillators is less discussed.In this work,we show that the Ott-Antonsen ansatz can also be applied to investigate the desynchronous dynamics in coupled phase oscillators.Studying the original Kuramoto model and two of its variants,we find that the dynamics of α(ω),the coefficient in the Fourier series of the probability density,can give most of the information on the synchronization,for example,the threshold of naturai frequency delimiting the oscillators synchronized and desychronized by the mean field,the formulation of the effective frequency ω;(ω) of desynchronous oscillators,and the structure of the graph ω;(ω).
引用
收藏
页码:32 / 36
页数:5
相关论文
共 50 条
  • [1] The Ott-Antonsen Ansatz in Globally Coupled Phase Oscillators
    巫年萍
    程洪艳
    代琼琳
    李海红
    Chinese Physics Letters, 2016, 33 (07) : 32 - 36
  • [2] The Ott-Antonsen Ansatz in Globally Coupled Phase Oscillators
    Wu, Nian-Ping
    Cheng, Hong-Yan
    Dai, Qiong-Lin
    Li, Hai-Hong
    CHINESE PHYSICS LETTERS, 2016, 33 (07)
  • [3] Turbulence in the Ott-Antonsen equation for arrays of coupled phase oscillators
    Wolfrum, M.
    Gurevich, S. V.
    Omel'chenko, O. E.
    NONLINEARITY, 2016, 29 (02) : 257 - 270
  • [4] Ott-Antonsen ansatz truncation of a circular cumulant series
    Goldobin, Denis S.
    Dolmatova, Anastasiya, V
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [5] Dynamics of Noisy Oscillator Populations beyond the Ott-Antonsen Ansatz
    Tyulkina, Irina, V
    Goldobin, Denis S.
    Klimenko, Lyudmila S.
    Pikovsky, Arkady
    PHYSICAL REVIEW LETTERS, 2018, 120 (26)
  • [6] Is the Ott-Antonsen manifold attracting?
    Engelbrecht, Jan R.
    Mirollo, Renato
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [7] Diversity of dynamical behaviors due to initial conditions: Extension of the Ott-Antonsen ansatz for identical Kuramoto-Sakaguchi phase oscillators
    Ichiki, Akihisa
    Okumura, Keiji
    PHYSICAL REVIEW E, 2020, 101 (02)
  • [8] The study of the dynamics of the order parameter of coupled oscillators in the Ott-Antonsen scheme for generic frequency distributions
    Campa, Alessandro
    CHAOS, 2022, 32 (08)
  • [9] Ott-Antonsen ansatz for the D-dimensional Kuramoto model: A constructive approach
    Barioni, Ana Elisa D.
    de Aguiar, Marcus A. M.
    CHAOS, 2021, 31 (11)
  • [10] Periodic orbits in the Ott-Antonsen manifold
    Omel'chenko, O. E.
    NONLINEARITY, 2023, 36 (02) : 845 - 861