Convergence of Generalized Alternating Direction Method of Multipliers for Nonseparable Nonconvex Objective with Linear Constraints

被引:5
|
作者
Ke GUO [1 ]
Xin WANG [1 ]
机构
[1] School of Mathematics and Information, China West Normal University
基金
中国国家自然科学基金;
关键词
generalized alternating direction method of multipliers; Kurdyka-Lojasiewicz inequality; nonconvex optimization;
D O I
暂无
中图分类号
O224 [最优化的数学理论];
学科分类号
070105 ; 1201 ;
摘要
In this paper, we consider the convergence of the generalized alternating direction method of multipliers(GADMM) for solving linearly constrained nonconvex minimization model whose objective contains coupled functions. Under the assumption that the augmented Lagrangian function satisfies the Kurdyka-Lojasiewicz inequality, we prove that the sequence generated by the GADMM converges to a critical point of the augmented Lagrangian function when the penalty parameter in the augmented Lagrangian function is sufficiently large. Moreover, we also present some sufficient conditions guaranteeing the sublinear and linear rate of convergence of the algorithm.
引用
收藏
页码:523 / 540
页数:18
相关论文
共 50 条
  • [1] On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers
    Deng, Wei
    Yin, Wotao
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 66 (03) : 889 - 916
  • [2] On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers
    Wei Deng
    Wotao Yin
    Journal of Scientific Computing, 2016, 66 : 889 - 916
  • [3] Local Linear Convergence of the Alternating Direction Method of Multipliers for Nonconvex Separable Optimization Problems
    Jia, Zehui
    Gao, Xue
    Cai, Xingju
    Han, Deren
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 188 (01) : 1 - 25
  • [4] On the linear convergence of the alternating direction method of multipliers
    Mingyi Hong
    Zhi-Quan Luo
    Mathematical Programming, 2017, 162 : 165 - 199
  • [5] On the linear convergence of the alternating direction method of multipliers
    Hong, Mingyi
    Luo, Zhi-Quan
    MATHEMATICAL PROGRAMMING, 2017, 162 (1-2) : 165 - 199
  • [6] Local Linear Convergence of the Alternating Direction Method of Multipliers for Nonconvex Separable Optimization Problems
    Zehui Jia
    Xue Gao
    Xingju Cai
    Deren Han
    Journal of Optimization Theory and Applications, 2021, 188 : 1 - 25
  • [7] CONVERGENCE OF ADMM FOR OPTIMIZATION PROBLEMS WITH NONSEPARABLE NONCONVEX OBJECTIVE AND LINEAR CONSTRAINTS
    Guo, Ke
    Han, Deren
    Wu, Tingting
    PACIFIC JOURNAL OF OPTIMIZATION, 2018, 14 (03): : 489 - 506
  • [8] CONVERGENCE ANALYSIS OF ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR A FAMILY OF NONCONVEX PROBLEMS
    Hong, Mingyi
    Luo, Zhi-Quan
    Razaviyayn, Meisam
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3836 - 3840
  • [9] CONVERGENCE ANALYSIS OF ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR A FAMILY OF NONCONVEX PROBLEMS
    Hong, Mingyi
    Luo, Zhi-Quan
    Razaviyayn, Meisam
    SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (01) : 337 - 364
  • [10] A proximal alternating direction method of multipliers for a minimization problem with nonconvex constraints
    Peng, Zheng
    Chen, Jianli
    Zhu, Wenxing
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 62 (04) : 711 - 728