POSITIVE SOLUTIONS TO SECOND-ORDER SINGULAR NEUMANN BOUNDARY VALUE PROBLEM WITH PARAMETERS IN THE BOUNDARY CONDITIONS

被引:0
作者
Zhilong Li (School of Informational Management
机构
关键词
fixed point index; lower and upper solutions method; Neumann boundary value problem; positive solutions; spectral radius of linear operators;
D O I
暂无
中图分类号
O175.8 [边值问题];
学科分类号
070104 ;
摘要
In this paper, we consider a class of nonlinear second-order singular Neumann boundary value problem with parameters in the boundary conditions. By the fixed point index, spectral theory of the linear operators, and lower and upper solutions method, we prove that there exists a constant λ* > 0 such that for λ∈ (0, λ * ), NBVP has at least two positive solutions; for λ = λ* , NBVP has at least one positive solution; for λ > λ* , NBVP has no solution.
引用
收藏
页码:407 / 413
页数:7
相关论文
共 5 条
[1]   POSITIVE SOLUTIONS TO SEMI-LINEAR SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS IN BANACH SPACE [J].
Li Zhilong School of Informational ManagementJiangxi University of Finance and EconomicsNanchang .
AnnalsofDifferentialEquations, 2008, (01) :29-33
[2]   奇异Neumann边值问题的多重正解(英文) [J].
姚庆六 .
中国科学技术大学学报, 2006, (10) :1082-1088
[3]   POSITIVE SOLUTIONS OF SINGULAR SECOND-ORDER NEUMANN BOUNDARY VALUE PROBLEM [J].
Li Zhilong School of Informational Management Jiangxi University of Finance and Economic Nanchang .
Annals of Differential Equations, 2005, (03) :321-326
[4]   二阶非线性常微分方程的正周期解 [J].
李永祥 .
数学学报, 2002, (03) :481-488
[5]   二阶微分方程Neumann边值问题正解存在性(英文) [J].
蒋达清 ;
刘辉昭 .
数学研究与评论, 2000, (03) :360-364