An estimation method for direct maintenance cost of aircraft components based on particle swarm optimization with immunity algorithm

被引:3
作者
吴静敏
左洪福
陈勇
机构
[1] China
[2] College of Civil Aviation
[3] Nanjing 210016
[4] Nanjing University of Aeronautics and Astronautics
关键词
aircraft design; maintenance cost; particle swarm optimization; immunity algorithm; predict;
D O I
暂无
中图分类号
V267 [航空器的维护与修理];
学科分类号
082503 ;
摘要
A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune selection mechanisms were used to prevent the undulate phenomenon during the evolutionary process. The algorithm was introduced through an application in the direct maintenance cost (DMC) estimation of aircraft components. Experiments results show that the algorithm can compute simply and run quickly. It resolves the combinatorial optimization problem of component DMC estimation with simple and available parameters. And it has higher accuracy than individual methods, such as PLS, BP and v-SVM, and also has better performance than other combined methods, such as basic PSO and BP neural network.
引用
收藏
页码:95 / 101
页数:7
相关论文
共 1 条
  • [1] van den,Bergh,F. Analysis of particle swarm optimizers . 2002