Fabrication and Characterization of Poly Lactic Acid Scaffolds by Fused Deposition Modeling for Bone Tissue Engineering

被引:3
作者
Mohammad Khodaei [1 ]
Kamran Amini [2 ,3 ]
Alireza Valanezhad [4 ]
机构
[1] Department of Materials Science and Engineering, Golpayegan University of Technology  2. Department of Materials Engineering, Tiran Branch, Islamic Azad University
[2] Center for Advanced Engineering Research, Majlesi Branch, Islamic Azad University
[3] Department of Dental and Biomedical Materials Science, Nagasaki University
关键词
3D porous scaffold; fused deposition modeling; poly-lactic acid; biodegradable polymer;
D O I
暂无
中图分类号
R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Three-dimensional porous poly-lactic acid(PLA) scaffold was fabricated using fused deposition modeling(FDM) method including 30%, 50% and 70% nominal porosity. Study of phases in initial polymeric material and printed scaffolds was done by X-ray diffraction(XRD), and no significant phase difference was observed due to the manufacturing process, and the poly-lactic acid retains its crystalline properties. The results of the mechanical properties evaluation by the compression test show that the mechanical properties of the scaffold have decreased significantly with increasing the porosity of scaffold. The microstructure of scaffolds were studied by scanning electron microscope(SEM), showing that the pores had a regular arrangement and their morphology changed with porosity change. The mechanical properties of the poly-lactic acid scaffolds printed using fused deposition modeling, can be adapted to the surrounding tissue, by porosity change.
引用
收藏
页码:248 / 251
页数:4
相关论文
共 50 条
  • [1] Fabrication and Characterization of Poly Lactic Acid Scaffolds by Fused Deposition Modeling for Bone Tissue Engineering
    Khodaei, Mohammad
    Amini, Kamran
    Valanezhad, Alireza
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2020, 35 (01): : 248 - 251
  • [2] Fabrication and Characterization of Poly Lactic Acid Scaffolds by Fused Deposition Modeling for Bone Tissue Engineering
    Mohammad Khodaei
    Kamran Amini
    Alireza Valanezhad
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2020, 35 : 248 - 251
  • [3] Fabrication and properties of poly(vinyl alcohol)/β-tricalcium phosphate composite scaffolds via fused deposition modeling for bone tissue engineering
    Chen, Gang
    Chen, Ning
    Wang, Qi
    COMPOSITES SCIENCE AND TECHNOLOGY, 2019, 172 : 17 - 28
  • [4] Fused Deposition Modeling of Poly (lactic acid)/Macadamia Composites-Thermal, Mechanical Properties and Scaffolds
    Song, Xiaohui
    He, Wei
    Qin, Huadong
    Yang, Shoufeng
    Wen, Shifeng
    MATERIALS, 2020, 13 (02)
  • [5] Fabrication of 3D porous poly(lactic acid)-based composite scaffolds with tunable biodegradation for bone tissue engineering
    Mao, Daoyong
    Li, Qing
    Li, Daikun
    Chen, Yashi
    Chen, Xinhong
    Xu, Xi
    MATERIALS & DESIGN, 2018, 142 : 1 - 10
  • [6] Bioactive electrospun nanocomposite scaffolds of poly(lactic acid)/cellulose nanocrystals for bone tissue engineering
    Patel, Dinesh K.
    Dutta, Sayan Deb
    Hexiu, Jin
    Ganguly, Keya
    Lim, Ki-Taek
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 162 : 1429 - 1441
  • [7] Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering
    Kao, Chia-Tze
    Lin, Chi-Chang
    Chen, Yi-Wen
    Yeh, Chia-Hung
    Fang, Hsin-Yuan
    Shie, Ming-You
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 56 : 165 - 173
  • [8] 3D-poly (lactic acid) scaffolds coated with gelatin and mucic acid for bone tissue engineering
    Ashwin, B.
    Abinaya, B.
    Prasith, T. P.
    Chandran, S. Viji
    Yadav, L. Roshini
    Vairamani, M.
    Patil, Shantanu
    Selvamurugan, N.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 162 : 523 - 532
  • [9] Fabrication and assessment of bifunctional electrospun poly(L-lactic acid) scaffolds with bioglass and zinc oxide nanoparticles for bone tissue engineering
    Canales, Daniel A.
    Pinones, Natalia
    Saavedra, Marcela
    Loyo, Carlos
    Palza, Humberto
    Peponi, Laura
    Leones, Adrian
    Vallejos Baier, Raul
    Boccaccini, Aldo R.
    Gruenelwald, Alina
    Zapata, Paula A.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 228 : 78 - 88
  • [10] Preparation of polycarbonate/poly(lactic acid) with improved printability and processability for fused deposition modeling
    Geng, Yi
    He, Hui
    Liu, Hao
    Jing, Huaishuai
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2020, 31 (11) : 2848 - 2862