Critical behavior of a dynamical percolation model

被引:0
|
作者
喻梅凌 [1 ]
许明梅 [2 ]
刘正猷 [1 ]
刘连寿 [2 ,3 ]
机构
[1] Department of Physics,Wuhan University
[2] Institute of Particle Physics,Huazhong Normal University
[3] Key Laboratory of Quark & Lepton Physics(Huazhong Normal University),Ministry of Education
基金
中国国家自然科学基金;
关键词
percolation; critical exponent; molecule-like aggregation; delocalization;
D O I
暂无
中图分类号
O572.243 [];
学科分类号
070202 ;
摘要
The critical behavior of the dynamical percolation model,which realizes the molecular-aggregation conception and describes the crossover between the hadronic phase and the partonic phase,is studied in detail. The critical percolation distance for this model is obtained by using the probability P∞ of the appearance of an infinite cluster. Utilizing the finite-size scaling method the critical exponents γ/ν and τ are extracted from the distribution of the average cluster size and cluster number density. The influences of two model related factors,i.e. the maximum bond number and the definition of the infinite cluster,on the critical behavior are found to be small.
引用
收藏
页码:552 / 556
页数:5
相关论文
共 50 条
  • [31] Critical behavior of transport in lattice and continuum percolation models
    Golden, KM
    PHYSICAL REVIEW LETTERS, 1997, 78 (20) : 3935 - 3938
  • [32] Asymptotic behavior of the critical probability for ρ-percolation in high dimensions
    Kesten, H
    Su, ZG
    PROBABILITY THEORY AND RELATED FIELDS, 2000, 117 (03) : 419 - 447
  • [33] Mapping functions and critical behavior of percolation on rectangular domains
    Watanabe, Hiroshi
    Hu, Chin-Kun
    PHYSICAL REVIEW E, 2008, 78 (04):
  • [34] CRITICAL-BEHAVIOR OF AB PERCOLATION IN 2 DIMENSIONS
    NAKANISHI, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (17): : 6075 - 6083
  • [35] Critical exponents for a percolation model on transient graphs
    Alexander Drewitz
    Alexis Prévost
    Pierre-François Rodriguez
    Inventiones mathematicae, 2023, 232 : 229 - 299
  • [36] Liouville dynamical percolation
    Christophe Garban
    Nina Holden
    Avelio Sepúlveda
    Xin Sun
    Probability Theory and Related Fields, 2021, 180 : 621 - 678
  • [37] Percolation as a dynamical phenomenon
    Departamento de Matematica, Univ. Fed. do Rio Grande do N., N., RN, Brazil
    不详
    不详
    Phys A Stat Mech Appl, 1-4 (81-85):
  • [38] Percolation as a dynamical phenomenon
    de Freitas, JE
    Lucena, LD
    Roux, S
    PHYSICA A, 1999, 266 (1-4): : 81 - 85
  • [39] Critical exponents for a percolation model on transient graphs
    Drewitz, Alexander
    Prevost, Alexis
    Rodriguez, Pierre-Francois
    INVENTIONES MATHEMATICAE, 2023, 232 (01) : 229 - 299
  • [40] A Survey of Dynamical Percolation
    Steif, Jeffrey E.
    FRACTAL GEOMETRY AND STOCHASTICS IV, 2009, 61 : 145 - 174