Critical behavior of a dynamical percolation model

被引:0
|
作者
喻梅凌 [1 ]
许明梅 [2 ]
刘正猷 [1 ]
刘连寿 [2 ,3 ]
机构
[1] Department of Physics,Wuhan University
[2] Institute of Particle Physics,Huazhong Normal University
[3] Key Laboratory of Quark & Lepton Physics(Huazhong Normal University),Ministry of Education
基金
中国国家自然科学基金;
关键词
percolation; critical exponent; molecule-like aggregation; delocalization;
D O I
暂无
中图分类号
O572.243 [];
学科分类号
070202 ;
摘要
The critical behavior of the dynamical percolation model,which realizes the molecular-aggregation conception and describes the crossover between the hadronic phase and the partonic phase,is studied in detail. The critical percolation distance for this model is obtained by using the probability P∞ of the appearance of an infinite cluster. Utilizing the finite-size scaling method the critical exponents γ/ν and τ are extracted from the distribution of the average cluster size and cluster number density. The influences of two model related factors,i.e. the maximum bond number and the definition of the infinite cluster,on the critical behavior are found to be small.
引用
收藏
页码:552 / 556
页数:5
相关论文
共 50 条
  • [1] Critical behavior of a dynamical percolation model
    Yu Mei-Ling
    Xu Ming-Mei
    Liu Zheng-You
    Liu Lian-Shou
    CHINESE PHYSICS C, 2009, 33 (07) : 552 - 556
  • [2] ON THE CRITICAL-BEHAVIOR OF THE GENERAL EPIDEMIC PROCESS AND DYNAMICAL PERCOLATION
    GRASSBERGER, P
    MATHEMATICAL BIOSCIENCES, 1983, 63 (02) : 157 - 172
  • [3] Dynamical evolution of a self-organized-critical percolation model
    Corso, G
    de Morais, ESB
    Lucena, LS
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 320 : 110 - 118
  • [4] CRITICAL-BEHAVIOR IN A MODEL OF CORRELATED PERCOLATION
    PATRASCIOIU, A
    SEILER, E
    JOURNAL OF STATISTICAL PHYSICS, 1992, 69 (1-2) : 55 - 65
  • [5] Critical behavior of a strain percolation model for metals
    Shim, Y
    Levine, LE
    Thomson, R
    PHYSICAL REVIEW E, 2002, 65 (04)
  • [6] Critical dynamical behavior of the Ising model
    Liu, Zihua
    Vatansever, Erol
    Barkema, Gerard T.
    Fytas, Nikolaos G.
    PHYSICAL REVIEW E, 2023, 108 (03)
  • [7] Dynamical sensitivity of the infinite cluster in critical percolation
    Peres, Yuval
    Schramm, Oded
    Steif, Jeffrey E.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (02): : 491 - 514
  • [8] Critical speeding-up in dynamical percolation
    Elci, Eren Metin
    Garoni, Timothy M.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (07):
  • [9] Critical behavior of a strain percolation model for metals with unstable locks
    Shim, Y
    Levine, LE
    Thomson, R
    Savage, MF
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 320 : 11 - 24
  • [10] CRITICAL BEHAVIOR IN PERCOLATION PROCESSES
    RUDD, WG
    FRISCH, HL
    PHYSICAL REVIEW B, 1970, 2 (01): : 162 - &