STABILITY OF A PAIR OF BANACH SPACES FOR ε-ISOMETRIES

被引:1
作者
戴端旭 [1 ]
郑本拓 [2 ]
机构
[1] College of Mathematics and Computer Science, Quanzhou Normal University
[2] Department of Mathematical Sciences, University of Memphis
基金
中央高校基本科研业务费专项资金资助;
关键词
Stability; ε-isometry; Figiel theorem; Banach space;
D O I
暂无
中图分类号
O177.2 [巴拿赫空间及其线性算子理论];
学科分类号
070104 ;
摘要
A pair of Banach spaces(X, Y) is said to be stable if for every ε-isometry f :X → Y, there exist γ > 0 and a bounded linear operator T : L(f) → X with ||T|| ≤α such that ||T f(x)-x|| ≤γε for all x ∈ X, where L(f) is the closed linear span of f(X). In this article, we study the stability of a pair of Banach spaces(X, Y) when X is a C(K) space.This gives a new positive answer to Qian’s problem. Finally, we also obtain a nonlinear version for Qian’s problem.
引用
收藏
页码:1163 / 1172
页数:10
相关论文
共 13 条
  • [1] A universal theorem for stability of ε-isometries of Banach spaces
    Cheng, Lixin
    Cheng, Qingjin
    Tu, Kun
    Zhang, Jichao
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (01) : 199 - 214
  • [2] On Universally Left-stability of ε-Isometry
    Ling Xin BAO
    Li Xin CHENG
    Qing Jin CHENG
    Duan Xu DAI
    [J]. Acta Mathematica Sinica,English Series, 2013, (11) : 2037 - 2046
  • [3] Stability of Banach spaces via nonlinear ε -isometries[J] . Duanxu Dai,Yunbai Dong.Journal of Mathematical Analysis and Applications . 2013
  • [4] On stability of nonlinear non-surjective ε-isometries of Banach spaces
    Cheng, Lixin
    Dong, Yunbai
    Zhang, Wen
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (03) : 713 - 734
  • [5] On separably injective Banach spaces[J] . Antonio Avilés,Félix Cabello Sánchez,Jesús M.F. Castillo,Manuel González,Yolanda Moreno.Advances in Mathematics . 2013
  • [6] Extending Lipschitz maps into C(K)-spaces
    Kalton, N. J.
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2007, 162 (01) : 275 - 315
  • [7] Nonsurjective nearisometries of Banach spaces[J] . Journal of Functional Analysis . 2002 (1)
  • [8] Separable lifting property and extensions of local reflexivity
    Johnson, WB
    Oikhberg, T
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2001, 45 (01) : 123 - 137
  • [9] Stability of surjectivity
    Tabor, J
    [J]. JOURNAL OF APPROXIMATION THEORY, 2000, 105 (01) : 166 - 175
  • [10] EPSILON-ISOMETRIC EMBEDDINGS
    QIAN, SW
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (06) : 1797 - 1803