A CHARACTERISTIC-BASED FINITE VOLUME SCHEME FOR SHALLOW WATER EQUATIONS

被引:0
|
作者
GUO Yan Department of Mathematics
机构
基金
中国国家自然科学基金;
关键词
shallow water equations; finite volume method; characteristic method; Central Weighted Essentially Non-Oscillatory (CWENO) scheme; HLLC flux;
D O I
暂无
中图分类号
O35 [流体力学];
学科分类号
080103 ; 080704 ;
摘要
We propose a new characteristic-based finite volume scheme combined with the method of Central Weighted Essentially Non-Oscillatory(CWENO) reconstruction and characteristics,to solve shallow water equations.We apply the scheme to simulate dam-break problems.A number of challenging test cases are considered,such as large depth differences even wet/dry bed.The numerical solutions well agree with the analytical solutions.The results demonstrate the desired accuracy,high-resolution and robustness of the presented scheme.
引用
收藏
页码:531 / 540
页数:10
相关论文
共 50 条
  • [1] A CHARACTERISTIC-BASED FINITE VOLUME SCHEME FOR SHALLOW WATER EQUATIONS
    Guo Yan
    Liu Ru-xun
    Duan Ya-li
    Li Yuan
    JOURNAL OF HYDRODYNAMICS, 2009, 21 (04) : 531 - 540
  • [2] A Characteristic-Based Finite Volume Scheme for Shallow Water Equations
    Yan Guo
    Ru-xun Liu
    Ya-li Duan
    Yuan Li
    Journal of Hydrodynamics, 2009, 21 : 531 - 540
  • [3] Characteristic-based finite volume scheme for 1D Euler equations
    Guo, Yan
    Liu, Ru-xun
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2009, 30 (03) : 303 - 312
  • [4] Characteristic-based finite volume scheme for 1D Euler equations
    郭彦
    刘儒勋
    AppliedMathematicsandMechanics(EnglishEdition), 2009, 30 (03) : 303 - 312
  • [5] Characteristic-based finite volume scheme for 1D Euler equations
    Yan Guo
    Ru-xun Liu
    Applied Mathematics and Mechanics, 2009, 30 : 303 - 312
  • [6] CHARACTERISTIC-BASED, ROTATED UPWIND SCHEME FOR THE EULER EQUATIONS
    DADONE, A
    GROSSMAN, B
    AIAA JOURNAL, 1992, 30 (09) : 2219 - 2226
  • [7] An Entropy Stable Finite Volume Scheme for the Equations of Shallow Water Magnetohydrodynamics
    Winters, Andrew R.
    Gassner, Gregor J.
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 67 (02) : 514 - 539
  • [8] Second Order Finite Volume Scheme for Shallow Water Equations on Manifolds
    Carlino, Michele Giuliano
    Gaburro, Elena
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [9] An Entropy Stable Finite Volume Scheme for the Equations of Shallow Water Magnetohydrodynamics
    Andrew R. Winters
    Gregor J. Gassner
    Journal of Scientific Computing, 2016, 67 : 514 - 539
  • [10] FINITE VOLUME MULTILEVEL APPROXIMATION OF THE SHALLOW WATER EQUATIONS WITH A TIME EXPLICIT SCHEME
    Bousquet, Arthur
    Marion, Martine
    Temam, Roger
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2014, 11 (04) : 762 - 786