Divisibilities and Congruences Identities on Traces of Singular Moduli

被引:0
作者
Bin CHEN
机构
[1] DepartmentofMathematicsandPhysics,WeinanNormalUniversity
关键词
traces of singular moduli; divisibilities; congruences; Hecke operators;
D O I
暂无
中图分类号
O153.3 [环论];
学科分类号
070104 ;
摘要
Zagier found that traces of singular moduli are the Fourier coefficients of certain modular forms of weight 3/2. As a result, formulas and congruences of these traces are obtained in various situations. Recently, Ahlgen proved a uniform relationship for traces of singular moduli by using the relationship of modular forms with the action of Hecke operators. On the basis of these results, we get some interesting divisibilities and congruences identities on traces of singular moduli and Hurwitz-Kronecker class number.
引用
收藏
页码:557 / 566
页数:10
相关论文
共 11 条
[1]  
Hecke relations for traces of singular moduli[J] . Scott Ahlgren.Bulletin of the London Mathematical Society . 2012 (1)
[2]  
Some congruences for traces of singular moduli[J] . P. Guerzhoy.Journal of Number Theory . 2006 (1)
[3]   Divisibility criteria for class numbers of imaginary quadratic fields [J].
Jenkins, Paul ;
Ono, Ken .
ACTA ARITHMETICA, 2006, 125 (03) :285-289
[4]   Hilbert class polynomials and traces of singular moduli [J].
Bruinier, JH ;
Jenkins, P ;
Ono, K .
MATHEMATISCHE ANNALEN, 2006, 334 (02) :373-393
[5]   Modular functions and the uniform distribution of CM points [J].
Duke, W .
MATHEMATISCHE ANNALEN, 2006, 334 (02) :241-252
[6]  
Kloosterman sums and traces of singular moduli[J] . Paul Jenkins.Journal of Number Theory . 2005 (2)
[7]   2-adic properties of Hecke traces of singular moduli. [J].
Boylan, M .
MATHEMATICAL RESEARCH LETTERS, 2005, 12 (04) :593-609
[8]   Arithmetic of singular moduli and class polynomials [J].
Ahlgren, S ;
Ono, K .
COMPOSITIO MATHEMATICA, 2005, 141 (02) :293-312
[9]   The arithmetic of Borcherds' exponents [J].
Bruinier, JH ;
Ono, K .
MATHEMATISCHE ANNALEN, 2003, 327 (02) :293-303
[10]  
Automorphic forms on O s +2,2(R) and infinite products[J] . Richard E. Borcherds.Inventiones Mathematicae . 1995 (1)