Initial Bounds for a Subclass of Analytic and Bi-Univalent Functions Defined by Chebyshev Polynomials and q-Differential Operator

被引:1
作者
Dong GUO
En AO
Huo TANG
Liangpeng XIONG
机构
[1] Foundation Department, Chuzhou Vocational and Technical College
[2] School of Mathematics and Statistics, Chifeng University
[3] School of Mathematics and Statistics, Wuhan University
基金
中国国家自然科学基金;
关键词
analytic functions; bi-univalent functions; coefficient estimates; Fekete-Szeg? inequality; Chebyshev polynomials; q-differential operator;
D O I
暂无
中图分类号
O174.51 [单复变数函数几何理论];
学科分类号
070104 ;
摘要
In this paper, we investigate the coefficient estimate and Fekete-Szeg? inequality of a subclass of analytic and bi-univalent functions defined by Chebyshev polynomials and qdifferential operator. The results presented in this paper improve or generalize the recent works of other authors.
引用
收藏
页码:506 / 516
页数:11
相关论文
共 7 条
  • [1] Fekete-Szeg? problem and Second Hankel Determinant for a class of bi-univalent functions[J] . N. Magesh,J. Yamini. Tbilisi Mathematical Journal . 2018 (1)
  • [2] The first and second kind chebyshev coefficients of the moments for the general order derivative on an infinitely differentiable function[J] . E. H. Doha. International Journal of Computer Mathematics . 1994 (1-2)
  • [3] A generalization of starlike functions[J] . Mourad E. H. Ismail,Edward Merkes,David Styer. Complex Variables and Elliptic Equations . 1990 (1-4)
  • [4] The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1[J] . E. Netanyahu. Archive for Rational Mechanics and Analysis . 1969 (2)
  • [6] Chebyshev Polynomial Approximations for the L-Membrane Eigenvalue Problem[J] . J. C. Mason. SIAM Journal on Applied Mathematics . 1967 (1)
  • [7] Univalent Functions .2 Duren P L. New York . 1983