LOCAL WELL-POSEDNESS TO THE CAUCHY PROBLEM OF THE 3-D COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY

被引:0
|
作者
叶嵎林 [1 ]
窦昌胜 [2 ,3 ]
酒全森 [1 ]
机构
[1] School of Mathematical Sciences,Capital Normal University
[2] LCP,Institute of Applied Physics and Computational Mathematics
[3] School of Statistics,Capital University of Economics and Business
基金
中国博士后科学基金;
关键词
Existence and uniqueness; classical solution; compressible Navier-Stokes equations; density-dependent viscosity; vacuum;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this article, we prove the local existence and uniqueness of the classical solution to the Cauchy problem of the 3-D compressible Navier-Stokes equations with large initial data and vacuum, if the shear viscosity μ is a positive constant and the bulk viscosity λ(ρ) = ρβwith β≥ 0. Note that the initial data can be arbitrarily large to contain vacuum states.
引用
收藏
页码:851 / 871
页数:21
相关论文
共 50 条