LOCAL WELL-POSEDNESS TO THE CAUCHY PROBLEM OF THE 3-D COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY

被引:0
作者
叶嵎林 [1 ]
窦昌胜 [2 ,3 ]
酒全森 [1 ]
机构
[1] School of Mathematical Sciences,Capital Normal University
[2] LCP,Institute of Applied Physics and Computational Mathematics
[3] School of Statistics,Capital University of Economics and Business
基金
中国博士后科学基金;
关键词
Existence and uniqueness; classical solution; compressible Navier-Stokes equations; density-dependent viscosity; vacuum;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this article, we prove the local existence and uniqueness of the classical solution to the Cauchy problem of the 3-D compressible Navier-Stokes equations with large initial data and vacuum, if the shear viscosity μ is a positive constant and the bulk viscosity λ(ρ) = ρβwith β≥ 0. Note that the initial data can be arbitrarily large to contain vacuum states.
引用
收藏
页码:851 / 871
页数:21
相关论文
共 28 条
  • [1] Global well-posedness of the Cauchy problem of two-dimensional compressible Navier–Stokes equations in weighted spaces[J] . Quansen Jiu,Yi Wang,Zhouping Xin.Journal of Differential Equations . 2013 (3)
  • [2] Lagrange Structure and Dynamics for Solutions to the Spherically Symmetric Compressible Navier-Stokes Equations
    Guo, Zhenhua
    Li, Hai-Liang
    Xin, Zhouping
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 309 (02) : 371 - 412
  • [3] Stability of Rarefaction Waves to the 1D Compressible Navier–Stokes Equations with Density-Dependent Viscosity[J] . Quansen Jiu,Yi Wang,Zhouping Xin.Communications in Partial Differential Equations . 2011 (4)
  • [4] Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations
    Li, Hai-Liang
    Li, Jing
    Xin, Zhouping
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 281 (02) : 401 - 444
  • [5] On the barotropic compressible Navier-Stokes equations
    Mellet, A.
    Vasseur, A.
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (03) : 431 - 452
  • [6] On compressible Navier–Stokes equations with density dependent viscosities in bounded domains[J] . Journal de mathématiques pures et appliquées . 2006 (2)
  • [7] On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier–Stokes models[J] . Journal de mathématiques pures et appliquées . 2006 (4)
  • [8] On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities
    Cho, YG
    Kim, H
    [J]. MANUSCRIPTA MATHEMATICA, 2006, 120 (01) : 91 - 129
  • [9] Compressible flow in a half-space with navier boundary conditions
    Hoff, D
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2005, 7 (03) : 315 - 338
  • [10] Quelques modèles diffusifs capillaires de type Korteweg[J] . Comptes rendus - Mécanique . 2004 (11)