A limit theorem for the solutions of slow–fast systems with fractional Brownian motion

被引:5
作者
Yong Xu
Rong Guo
Wei Xu
机构
[1] DepartmentofAppliedMathematics,NorthwesternPolytechnicalUniversity
关键词
slow–fast system; mean square; fractional Brownian motion;
D O I
暂无
中图分类号
O211.6 [随机过程];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A limit theorem which can simplify slow–fast dynamical systems driven by fractional Brownian motion with the Hurst parameter H inside the(1/2, 1) interval has been proved. The slow variables of the original system can be approximated by the solution of the simplified equations in the sense of mean square. An example is presented to illustrate the applications of the limit theorem.
引用
收藏
页码:28 / 31
页数:4
相关论文
共 13 条
[1]  
Theory of the amplitude of free and forced triode vibration. Van der Pol,B. Radio Rev . 1920
[2]  
Nonlinear stochastic dynamics and control in Hamiltonian formulation. Zhu,W.Q. Journal of Applied Mathematics . 2006
[3]  
The effect of additive noise on dynamical hysteresis. Nils Berglund,Barbara Gentz. Nonlinearity . 2002
[4]  
Theory of stochastic resonance. McNamara B,Wiesenfeld K. Physical Review A Atomic Molecular and Optical Physics . 1989
[5]  
Bursting oscillations induced by small noise. Hitczenko, Pawel,Medvedev, Georgi S. SIAM Journal on Applied Mathematics . 2009
[6]  
Average and deviation for slow–fast stochastic partial differential equations[J] . W. Wang,A.J. Roberts. &nbspJournal of Differential Equations . 2012 (5)
[7]   Hunting French ducks in a noisy environment [J].
Berglund, Nils ;
Gentz, Barbara ;
Kuehn, Christian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (09) :4786-4841
[8]  
An averaging principle for stochastic dynamical systems with Lévy noise[J] . Yong Xu,Jinqiao Duan,Wei Xu. &nbspPhysica D: Nonlinear Phenomena . 2011 (17)
[9]  
Effects of noise on elliptic bursters. Jianzhong Su,Jonathan Rubin,David Terman. Nonlinearity . 2004
[10]   APP [P]. 
BEN SMITH .
澳大利亚专利 :AU2011101259A4 ,2011-11-10