隐私保护数据发布中身份保持的匿名方法

被引:45
作者
童云海
陶有东
唐世渭
杨冬青
机构
[1] 机器感知与智能教育部重点实验室(北京大学)
关键词
隐私保护; 数据发布; 匿名; 身份保持; 有损连接; 概化;
D O I
暂无
中图分类号
TP311.13 [];
学科分类号
1201 ;
摘要
在隐私保护的数据发布研究中,目前的方法通常都是先删除身份标识属性,然后对准标识属性进行匿名处理.分析了单一个体对应多个记录的情况,提出了一种保持身份标识属性的匿名方法,它在保持隐私的同时进一步提高了信息有效性.采用概化和有损连接两种实现方式.实验结果表明,该方法提高了信息有效性,具有很好的实用性.
引用
收藏
页码:771 / 781
页数:11
相关论文
共 13 条
[1]  
Anatomy:Simple and effective privacy preservation. Xiao X,Tao Y. Proc.of the32nd Int’l Conf.on Very Large Data Bases . 2006
[2]  
UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/datasets/Adult .
[3]  
t-Closeness:Privacy beyond k-anonymity and l-diversity. Li N,Li T,Venkatasubramanian S. Proc.of the23rd Int’l Conf.on Data Engineering . 2007
[4]  
Personalized privacy protecting. Xiao X,Tao Y. Proc.of the Int’l Conf.on Management of Data . 2006
[5]  
l-Diversity:Privacy beyond K-anonymity. Machanavajjhala A,Gehrke J,Kifer D. Proc.of the22nd Int’l Conf.on Data Engineering . 2006
[6]  
Anonymizing sequential releases. Wang K,Fung BCM. Proc.of the12th Int’l Conf.on Knowledge Discovery and Data Mining . 2006
[7]  
Protecting respondents identities in microdata release. Samarati P. IEEE Transactions of Knowledge and Data Engineering . 2001
[8]  
Anonymizing tables. Aggarwal G,Feder T,Kenthapadi K,Motwani R,Panigrahy R,Thomas D,Zhu A. Proc.of the10th Int’l Conf.on Database Theory . 2005
[9]  
K-anonymity: a model for protecting privacy. Sweeney L. International Journal on Uncertainty,Fuzziness and Knowledge-Based Systems . 2002
[10]  
Incognito:Efficient full-domain K-anonymity. LeFevre K,DeWitt DJ,Ramakrishnan R. Proc.of the Int’l Conf.on Management of Data . 2005