A TVD Type Wavelet-Galerkin Method for Hamilton-Jacobi Equations

被引:0
作者
Lingyan Tang Songhe Song Department of Mathematics and System ScienceScience SchoolNational University of Defense TechnologyHunan China [410073 ]
机构
关键词
Hamilton-jacobi equation; wavelet-galerkin method; daubechies wavelet; TVD method;
D O I
暂无
中图分类号
O174 [函数论];
学科分类号
070104 ;
摘要
<正> In this paper,we use Daubechies scaling functions as test functions for the Galerkin method,and discuss Wavelet-Galerkin solutions for the Hamilton-Jacobi equations.It can be proved that the schemesare TVD schemes.Numerical tests indicate that the schemes are suitable for the Hamilton-Jacobi equations.Furthermore,they have high-order accuracy in smooth regions and good resolution of singularities.
引用
收藏
页码:303 / 310
页数:8
相关论文
共 50 条
[41]   Wavelet-Galerkin method for computations of electromagnetic fields [J].
Yang, SY ;
Ni, GZ ;
Qian, JG ;
Li, RL .
IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) :2493-2496
[42]   Local-Structure-Preserving Discontinuous Galerkin Methods with Lax-Wendroff Type Time Discretizations for Hamilton-Jacobi Equations [J].
Wei Guo ;
Fengyan Li ;
Jianxian Qiu .
Journal of Scientific Computing, 2011, 47 :239-257
[43]   Local-Structure-Preserving Discontinuous Galerkin Methods with Lax-Wendroff Type Time Discretizations for Hamilton-Jacobi Equations [J].
Guo, Wei ;
Li, Fengyan ;
Qiu, Jianxian .
JOURNAL OF SCIENTIFIC COMPUTING, 2011, 47 (02) :239-257
[44]   GLOBAL PROPAGATION OF SINGULARITIES FOR DISCOUNTED HAMILTON-JACOBI EQUATIONS [J].
Chen, Cui ;
Hong, Jiahui ;
Zhao, Kai .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (04) :1949-1970
[45]   Variational optimisation by the solution of a series of Hamilton-Jacobi equations [J].
Venkatesh, PK ;
Petzold, LR ;
Carr, RW ;
Cohen, MH ;
Dean, AM .
PHYSICA D, 2001, 154 (1-2) :15-25
[46]   Hamilton-Jacobi equations and distance functions on Riemannian manifolds [J].
Mantegazza, C ;
Mennucci, AC .
APPLIED MATHEMATICS AND OPTIMIZATION, 2003, 47 (01) :1-25
[47]   THE INVERSE PROBLEM FOR HAMILTON-JACOBI EQUATIONS AND SEMICONCAVE ENVELOPES [J].
Esteve, Carlos ;
Zuazua, Enrique .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (06) :5627-5657
[48]   Canonical Equations for the Generalized Hamilton-Jacobi Equation in DGWITL [J].
Ciletti, M. D. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1974, 13 (03) :262-274
[49]   Group analysis of a Hamilton-Jacobi type equation [J].
Lobo, Jervin Zen .
JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2023, 26 (01) :51-66
[50]   A monotone scheme for Hamilton-Jacobi equations via the nonstandard finite difference method [J].
Anguelov, Roumen ;
Lubuma, Jean M. -S. ;
Minani, Froduald .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (01) :41-48