A TVD Type Wavelet-Galerkin Method for Hamilton-Jacobi Equations

被引:0
作者
Ling-yan Tang Song-he Song Department of Mathematics and System Science
机构
基金
中国国家自然科学基金;
关键词
Hamilton-jacobi equation; wavelet-galerkin method; daubechies wavelet; TVD method;
D O I
暂无
中图分类号
O174 [函数论];
学科分类号
070104 ;
摘要
In this paper,we use Daubechies scaling functions as test functions for the Galerkin method,and discuss Wavelet-Galerkin solutions for the Hamilton-Jacobi equations.It can be proved that the schemesare TVD schemes.Numerical tests indicate that the schemes are suitable for the Hamilton-Jacobi equations.Furthermore,they have high-order accuracy in smooth regions and good resolution of singularities.
引用
收藏
页码:303 / 310
页数:8
相关论文
共 50 条
[31]   Persistence and stability of solutions of Hamilton-Jacobi equations [J].
Penot, Jean-Paul ;
Zalinescu, Constantin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 347 (01) :188-203
[32]   Viscosity solutions of discontinuous Hamilton-Jacobi equations [J].
Chen, Xinfu ;
Hu, Bei .
INTERFACES AND FREE BOUNDARIES, 2008, 10 (03) :339-359
[33]   A Hamilton-Jacobi approach to nonlocal kinetic equations [J].
Loy, Nadia ;
Perthame, Benoit .
NONLINEARITY, 2024, 37 (10)
[34]   Termination time of characteristics of Hamilton-Jacobi equations [J].
Li, Tian-Hong ;
Li, Xing .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (03) :799-809
[35]   Hermite WENO schemes for Hamilton-Jacobi equations [J].
Qiu, JX ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 204 (01) :82-99
[36]   Hyperbolic domains of determinacy and Hamilton-Jacobi equations [J].
Joly, JL ;
Métivier, G .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2005, 2 (03) :713-744
[37]   Termination time of characteristics of Hamilton-Jacobi equations [J].
Tian-Hong Li ;
Xing Li .
Zeitschrift für angewandte Mathematik und Physik, 2013, 64 :799-809
[38]   Unconditionally stable methods for Hamilton-Jacobi equations [J].
Karlsen, KH ;
Risebro, NH .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 180 (02) :710-735
[39]   Dynamic boundary conditions for Hamilton-Jacobi equations [J].
Elliott, CM ;
Giga, Y ;
Goto, S .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 34 (04) :861-881
[40]   Wavelet-Galerkin solutions of quasilinear hyperbolic conservation equations [J].
Avudainayagam, A ;
Vani, C .
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1999, 15 (08) :589-601