A TVD Type Wavelet-Galerkin Method for Hamilton-Jacobi Equations

被引:0
作者
Lingyan Tang Songhe Song Department of Mathematics and System ScienceScience SchoolNational University of Defense TechnologyHunan China [410073 ]
机构
关键词
Hamilton-jacobi equation; wavelet-galerkin method; daubechies wavelet; TVD method;
D O I
暂无
中图分类号
O174 [函数论];
学科分类号
070104 ;
摘要
<正> In this paper,we use Daubechies scaling functions as test functions for the Galerkin method,and discuss Wavelet-Galerkin solutions for the Hamilton-Jacobi equations.It can be proved that the schemesare TVD schemes.Numerical tests indicate that the schemes are suitable for the Hamilton-Jacobi equations.Furthermore,they have high-order accuracy in smooth regions and good resolution of singularities.
引用
收藏
页码:303 / 310
页数:8
相关论文
共 50 条
[21]   On shock generation for Hamilton-Jacobi equations [J].
Stromberg, Thomas .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2009, 20 (04) :619-629
[22]   On Hamilton-Jacobi equations for neutral-type differential games [J].
Gomoyunov, Mikhail ;
Plaksin, Anton .
IFAC PAPERSONLINE, 2018, 51 (14) :171-176
[23]   The relaxing schemes for Hamilton-Jacobi equations [J].
Tang, HZ ;
Wu, HM .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2001, 19 (03) :231-240
[24]   GENERALIZED CHARACTERISTICS OF HAMILTON-JACOBI EQUATIONS [J].
SUBBOTIN, AI ;
TARASYEV, AM ;
USHAKOV, VN .
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 1994, 32 (02) :157-163
[25]   Hypercontractivity of Solutions to Hamilton-Jacobi Equations [J].
Beniamin Goldys .
Czechoslovak Mathematical Journal, 2001, 51 :733-743
[26]   Wavelet-Galerkin method for the Kolmogorov equation [J].
Liang, ZG ;
Yau, SST .
MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (9-10) :1093-1121
[27]   HAMILTON-JACOBI EQUATIONS FOR NONSYMMETRIC MATRIX INFERENCE [J].
Chen, Hong-Bin .
ANNALS OF APPLIED PROBABILITY, 2022, 32 (04) :2540-2567
[28]   Homogenization of Hamilton-Jacobi equations: Numerical methods [J].
Achdou, Yves ;
Camilli, Fabio ;
Dolcetta, Italo Capuzzo .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2008, 18 (07) :1115-1143
[29]   A Hamilton-Jacobi approach to neural field equations [J].
Tao, Wen ;
Li, Wan-Tong ;
Sun, Jian-Wen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 422 :659-695
[30]   Termination time of characteristics of Hamilton-Jacobi equations [J].
Li, Tian-Hong ;
Li, Xing .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (03) :799-809