A TVD Type Wavelet-Galerkin Method for Hamilton-Jacobi Equations

被引:0
作者
Ling-yan Tang Song-he Song Department of Mathematics and System Science
机构
基金
中国国家自然科学基金;
关键词
Hamilton-jacobi equation; wavelet-galerkin method; daubechies wavelet; TVD method;
D O I
暂无
中图分类号
O174 [函数论];
学科分类号
070104 ;
摘要
In this paper,we use Daubechies scaling functions as test functions for the Galerkin method,and discuss Wavelet-Galerkin solutions for the Hamilton-Jacobi equations.It can be proved that the schemesare TVD schemes.Numerical tests indicate that the schemes are suitable for the Hamilton-Jacobi equations.Furthermore,they have high-order accuracy in smooth regions and good resolution of singularities.
引用
收藏
页码:303 / 310
页数:8
相关论文
共 50 条
[1]   A TVD type Wavelet-Galerkin method for Hamilton-Jacobi equations [J].
Tang, Ling-yan ;
Song, Song-he .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2007, 23 (02) :303-310
[2]   A TVD Type Wavelet-Galerkin Method for Hamilton-Jacobi Equations [J].
Ling-yan Tang ;
Song-he Song .
Acta Mathematicae Applicatae Sinica, English Series, 2007, 23 :303-310
[3]   A Central Discontinuous Galerkin Method for Hamilton-Jacobi Equations [J].
Fengyan Li ;
Sergey Yakovlev .
Journal of Scientific Computing, 2010, 45 :404-428
[4]   A Central Discontinuous Galerkin Method for Hamilton-Jacobi Equations [J].
Li, Fengyan ;
Yakovlev, Sergey .
JOURNAL OF SCIENTIFIC COMPUTING, 2010, 45 (1-3) :404-428
[5]   A TVD-type method for 2D scalar Hamilton-Jacobi equations on unstructured meshes [J].
Tang, Lingyan ;
Song, Songhe .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 195 (1-2) :182-191
[6]   A local discontinuous Galerkin method for directly solving Hamilton-Jacobi equations [J].
Yan, Jue ;
Osher, Stanley .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (01) :232-244
[7]   A new discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations [J].
Cheng, Yingda ;
Wang, Zixuan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 268 :134-153
[8]   Wavelet-Galerkin method for integro-differential equations [J].
Avudainayagam, A ;
Vani, C .
APPLIED NUMERICAL MATHEMATICS, 2000, 32 (03) :247-254
[9]   An Alternative Formulation of Discontinous Galerkin Schemes for Solving Hamilton-Jacobi Equations [J].
Ke, Guoyi ;
Guo, Wei .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (02) :1023-1044
[10]   Systems of Hamilton-Jacobi equations [J].
Cambronero, Julio ;
Perez Alvarez, Javier .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2019, 26 (04) :650-658