STABILITY ANALYSIS TO A PREDATOR-PREY SYSTEM WITH DELAY

被引:0
作者
Yi QuLinlin WangSchool of Mathand InformationLudong UniversityYantai Shandong [264025 ]
机构
关键词
global asymptotic stability; feedback regulation; time delay;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper,we consider a delayed predator-prey system and obtain sufficient conditions for the global asymptotic stability of the positive equilibrium.
引用
收藏
页码:423 / 428
页数:6
相关论文
共 50 条
[31]   Global Stability for a Delayed Predator-Prey System with Stage Structure for the Predator [J].
Zhang, Xiao ;
Xu, Rui ;
Gan, Qintao .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2009, 2009
[32]   Stability and Hopf bifurcation of a predator-prey model with stage structure and time delay for the prey [J].
Song, Yan ;
Xiao, Wen ;
Qi, Xiaoyu .
NONLINEAR DYNAMICS, 2016, 83 (03) :1409-1418
[33]   BIFURCATION OF A PREDATOR-PREY SYSTEM WITH GENERATION DELAY AND HABITAT COMPLEXITY [J].
Ma, Zhihui ;
Tang, Haopeng ;
Wang, Shufan ;
Wang, Tingting .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (01) :43-58
[34]   POSITIVE PERIODIC SOLUTION OF A PREDATOR-PREY SYSTEM WITH TIME DELAY [J].
Yang Wensheng Bai Zijun Li Xuepeng College of Mathand Computer ScienceFujian Normal UniversityFuzhou .
AnnalsofDifferentialEquations, 2007, (04) :552-557
[35]   The effect of dispersal on the permanence of a predator-prey system with time delay [J].
Xu, Rui ;
Ma, Zhien .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (02) :354-369
[36]   A stage-structured predator-prey system with time delay [J].
Wang L. ;
Xu R. ;
Feng G. .
Journal of Applied Mathematics and Computing, 2010, 33 (1-2) :267-281
[37]   Stability Analysis of a Predator-prey Model with Impulsive Control [J].
Song, Yan ;
Qi, Xiao-Yu ;
Gao, Ya-Jun ;
Xiao, Wen .
2015 International Conference on Mechanical Engineering and Automation (ICMEA 2015), 2015, :52-57
[38]   Bifurcation analysis of an autonomous epidemic predator-prey model with delay [J].
Xu, Changjin ;
Liao, Maoxin .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (01) :23-38
[39]   Stability and bifurcation analysis for a delayed Lotka-Volterra predator-prey system [J].
Yan, Xiang-Ping ;
Chu, Yan-Dong .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 196 (01) :198-210
[40]   Bifurcation and stability analysis for a delayed Leslie-Gower predator-prey system [J].
Yuan, Sanling ;
Song, Yongli .
IMA JOURNAL OF APPLIED MATHEMATICS, 2009, 74 (04) :574-603