Clustering Structure Analysis in Time-Series Data With Density-Based Clusterability Measure

被引:0
作者
Juho Jokinen [1 ]
Tomi Rty [2 ,1 ]
Timo Lintonen [1 ]
机构
[1] VTT Technical Research Centre of Finland
[2] IEEE
关键词
Clustering; exploratory data analysis; time-series; unsupervised learning;
D O I
暂无
中图分类号
TP311.13 []; TP181 [自动推理、机器学习]; O211.61 [平稳过程与二阶矩过程];
学科分类号
1201 ; 081104 ; 0812 ; 0835 ; 1405 ; 020208 ; 070103 ; 0714 ;
摘要
Clustering is used to gain an intuition of the struc tures in the data. Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure. In these cases, the algorithms force a structure in the data instead of discovering one. To avoid false structures in the relations of data, a novel clusterability assessment method called density-based clusterability measure is proposed in this paper. I measures the prominence of clustering structure in the data to evaluate whether a cluster analysis could produce a meaningfu insight to the relationships in the data. This is especially useful in time-series data since visualizing the structure in time-series data is hard. The performance of the clusterability measure is evalu ated against several synthetic data sets and time-series data sets which illustrate that the density-based clusterability measure can successfully indicate clustering structure of time-series data.
引用
收藏
页码:1332 / 1343
页数:12
相关论文
共 26 条
[1]  
Optimization of Grouping Evacuation Strategy in High-rise Building Fires Based on Graph Theory and Computational Experiments[J]. Yuling Hu,Xiwei Liu.IEEE/CAA Journal of Automatica Sinica. 2018(06)
[2]  
Local Robust Sparse Representation for Face Recognition With Single Sample per Person[J]. Jianquan Gu,Haifeng Hu,Haoxi Li.IEEE/CAA Journal of Automatica Sinica. 2018(02)
[3]   PDP: Parallel Dynamic Programming [J].
FeiYue Wang ;
Jie Zhang ;
Qinglai Wei ;
Xinhu Zheng ;
Li Li .
IEEE/CAA Journal of Automatica Sinica, 2017, 4 (01) :1-5
[4]  
To cluster, or not to cluster: An analysis of clusterability methods[J] . Andreas Adolfsson,Margareta Ackerman,Naomi C. Brownstein.Pattern Recognition . 2019
[5]   A Review on Modal Clustering [J].
Menardi, Giovanna .
INTERNATIONAL STATISTICAL REVIEW, 2016, 84 (03) :413-433
[6]  
The ASA's Statement on p -Values: Context, Process, and Purpose[J] . Ronald L. Wasserstein,Nicole A. Lazar.The American Statistician . 2016 (2)
[7]  
Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection[J] . Ricardo J. G. B. Campello,Davoud Moulavi,Arthur Zimek,J?rg Sander.ACM Transactions on Knowledge Discovery from Data . 2015 (1)
[8]  
Clusterability assessment for Gaussian mixture models[J] . Ewa Nowakowska,Jacek Koronacki,Stan Lipovetsky.Applied Mathematics and Computation . 2015
[9]  
What are the true clusters?[J] . Christian Hennig.Pattern Recognition Letters . 2015
[10]  
CID: an efficient complexity-invariant distance for time series[J] . Gustavo E. A. P. A. Batista,Eamonn J. Keogh,Oben Moses Tataw,Vinícius M. A. Souza.Data Mining and Knowledge Discovery . 2014 (3)