A NONLINEAR GALERKIN/PETROV-LEAST SQUARES MIXED ELEMENT METHOD FOR THE STATIONARY NAVIER-STOKES EQUATIONS

被引:1
作者
罗振东
朱江
王会军
机构
关键词
Navier-Stokes equation; nonlinear Galerkin mixed element method; Petrov-least squares method; error estimate;
D O I
暂无
中图分类号
O241.8 [微分方程、积分方程的数值解法];
学科分类号
070102 ;
摘要
A nonlinear Galerkin/Petrov-least squares mixed element (NGPLSME) method for the stationary Navier-Stokes equations is presented and analyzed. The scheme is that Petrov-least squares forms of residuals are added to the nonlinear Galerkin mixed element method so that it is stable for any combination of discrete velocity and pressure spaces without requiring the Babu*lka-Brezzi stability condition. The existence, uniqueness and convergence (at optimal rate) of the NGPLSME solution is proved in the case of sufficient viscosity (or small data).
引用
收藏
页码:783 / 793
页数:11
相关论文
共 3 条
  • [1] Nonlinear Galerkin methods: The finite elements case[J] . M. Marion,R. Temam.Numerische Mathematik . 1990 (1)
  • [2] Stabilized mixed methods for the Stokes problem[J] . Franco Brezzi,Jim Douglas.Numerische Mathematik . 1988 (1)
  • [3] Two classes of mixed finite element methods. France L P, Hughes T J. Computational Methods in Applied Mathematics . 1988