Fabrication of hierarchical polycaprolactone/gel scaffolds via combined 3D bioprinting and electrospinning for tissue engineering

被引:0
|
作者
Yong-Ze Yu [1 ]
Lu-Lu Zheng [1 ]
Hai-Ping Chen [1 ]
Wei-Hua Chen [1 ]
Qing-Xi Hu [1 ]
机构
[1] Rapid Manufacturing Engineering Center,Shanghai University
基金
中国国家自然科学基金;
关键词
Hierarchical scaffold; 3D bioprinting Electrospinning; Tissue engineering;
D O I
暂无
中图分类号
TQ340.64 [纺丝];
学科分类号
摘要
It is a severe challenge to construct 3D scaffolds which hold controllable pore structure and similar morphology of the natural extracellular matrix(ECM).In this study,a compound technology is proposed by combining the 3D bioprinting and electrospinning process to fabricate 3D scaffolds,which are composed by orthogonal array gel microfibers in a grid-like arrangement and intercalated by a nonwoven structure with randomly distributed polycaprolactone(PCL) nanofibers.Human adiposederived stem cells(hASCs) are seeded on the hierarchical scaffold and cultured 21 d for in vitro study.The results of cells culturing show that the microfibers structure with controlled pores can allow the easy entrance of cells and the efficient diffusion of nutrients,and the nanofiber webs layered in the scaffold can significantly improve initial cell attachment and proliferation.The present work demonstrates that the hierarchical PCL/gel scaffolds consisting of controllable 3D architecture with interconnected pores and biomimetic nanofiber structures resembling the ECM can be designed and fabricated by the combination of 3D bioprinting and electrospinning to improve biological performance in tissue engineering applications.
引用
收藏
页码:231 / 238
页数:8
相关论文
共 50 条
  • [1] Fabrication of hierarchical polycaprolactone/gel scaffolds via combined 3D bioprinting and electrospinning for tissue engineering
    Yu, Yong-Ze
    Zheng, Lu-Lu
    Chen, Hai-Ping
    Chen, Wei-Hua
    Hu, Qing-Xi
    ADVANCES IN MANUFACTURING, 2014, 2 (03) : 231 - 238
  • [2] Fabrication of hierarchical polycaprolactone/gel scaffolds via combined 3D bioprinting and electrospinning for tissue engineering
    Yong-Ze Yu
    Lu-Lu Zheng
    Hai-Ping Chen
    Wei-Hua Chen
    Qing-Xi Hu
    Advances in Manufacturing, 2014, 2 : 231 - 238
  • [3] Fabrication of 3D printed antimicrobial polycaprolactone scaffolds for tissue engineering applications
    Radhakrishnan, Socrates
    Nagarajan, Sakthivel
    Belaid, Habib
    Farha, Cynthia
    Iatsunskyi, Igor
    Coy, Emerson
    Soussan, Laurence
    Huon, Vincent
    Bares, Jonathan
    Belkacemi, Kawthar
    Teyssier, Catherine
    Balme, Sebastien
    Miele, Philippe
    Cornu, David
    Kalkura, Narayana
    Cavailles, Vincent
    Bechelany, Mikhael
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 118
  • [4] Polycaprolactone, polylactic acid, and nanohydroxyapatite scaffolds obtained by electrospinning and 3D printing for tissue engineering
    Rodriguez, Omar Alejandro Gonzalez
    Guerrero, Nancy Cecilia Ramirez
    Pimentel, Rocio Guadalupe Casanas
    Fonseca, Monica Rosalia Jaime
    Martinez, Eduardo San Martin
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2024, 73 (15) : 1279 - 1290
  • [5] Convergence of 3D Bioprinting and Nanotechnology in Tissue Engineering Scaffolds
    Zhang, Shike
    Chen, Xin
    Shan, Mengyao
    Hao, Zijuan
    Zhang, Xiaoyang
    Meng, Lingxian
    Zhai, Zhen
    Zhang, Linlin
    Liu, Xuying
    Wang, Xianghong
    BIOMIMETICS, 2023, 8 (01)
  • [6] Research progress in tissue engineering scaffolds by 3D bioprinting
    Wang S.
    Ma Q.
    Wang K.
    Gu Y.
    Fangzhi Xuebao/Journal of Textile Research, 2023, 44 (03): : 210 - 220
  • [7] Fabrication of 3D Polycaprolactone Macrostructures by 3D Electrospinning
    Chinnakorn, Atchara
    Soi-Ngoen, Yanawarut
    Weeranantanapan, Oratai
    Pakawanit, Phakkhananan
    Maensiri, Santi
    Srisom, Kriettisak
    Janphuang, Pattanaphong
    Radacsi, Norbert
    Nuansing, Wiwat
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2024, 10 (08): : 5336 - 5351
  • [8] Vascular Tissue Engineering Using Polycaprolactone Nanofibrous Scaffolds Fabricated via Electrospinning
    Elnakady, Y. A.
    Al Rez, Mohammed F.
    Fouad, H.
    Abuelreich, Sarah
    Albarrag, Ahmed M.
    Mahmood, Amer
    Alothman, Othman Y.
    Elsarnagawy, T.
    Ansari, S. G.
    SCIENCE OF ADVANCED MATERIALS, 2015, 7 (03) : 407 - 413
  • [9] Mimicking nature: Fabrication of 3D anisotropic electrospun polycaprolactone scaffolds for cartilage tissue engineering applications
    Girao, Andre F.
    Semitela, Angela
    Ramalho, Goncalo
    Completo, Antonio
    Marques, Paula A. A. P.
    COMPOSITES PART B-ENGINEERING, 2018, 154 : 99 - 107
  • [10] 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review
    Keirouz, Antonios
    Chung, Michael
    Kwon, Jaehoon
    Fortunato, Giuseppino
    Radacsi, Norbert
    WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2020, 12 (04)