SOLVABILITY OF A PARABOLIC-HYPERBOLIC TYPE CHEMOTAXIS SYSTEM IN 1-DIMENSIONAL DOMAIN

被引:0
作者
陈化 [1 ]
吕文斌 [1 ]
吴少华 [1 ]
机构
[1] School of Mathematics and Statistics Computational Science Hubei Key Laboratory, Wuhan University
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
parabolic-hyperbolic system; free boundary; chemotaxis model; local existence;
D O I
暂无
中图分类号
O175.2 [偏微分方程];
学科分类号
070104 ;
摘要
In this paper, we use contraction mapping principle, operator-theoretic approach and some uniform estimates to establish local solvability of the parabolic-hyperbolic type chemotaxis system with fixed boundary in 1-dimensional domain. In addition, local solvability of the free boundary problem is considered by straightening the free boundary.
引用
收藏
页码:1285 / 1304
页数:20
相关论文
共 10 条
[1]   趋化模型中的一个自由边界问题 [J].
吴少华 .
数学学报, 2010, 53 (03) :515-524
[2]  
THE LOCAL AND GLOBAL EXISTENCE OF THE SOLUTIONS OF HYPERBOLIC-PARABOLIC SYSTEM MODELING BIOLOGICAL PHENOMENA[J]. 吴少华,陈化,李维喜. Acta Mathematica Scientia. 2008(01)
[3]  
Uniqueness and symmetry of equilibria in a chemotaxis model[J] . Dirk Horstmann,Marcello Lucia. Journal für die reine und angewandte Mathematik (Crelles Journal) . 2011 (654)
[4]  
A user’s guide to PDE models for chemotaxis[J] . T. Hillen,K. J. Painter. Journal of Mathematical Biology . 2009 (1-2)
[5]  
Norm behaviour of solutions to a parabolic–elliptic system modelling chemotaxis in a domain of ?3[J] . HuaChen,XinhuaZhong. Math. Meth. Appl. Sci. . 2004 (9)
[6]   Weak solutions to a parabolic-elliptic system of chemotaxis [J].
Senba, T ;
Suzuki, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 191 (01) :17-51
[7]   Global existence for a parabolic chemotaxis model with prevention of overcrowding [J].
Hillen, T ;
Painter, K .
ADVANCES IN APPLIED MATHEMATICS, 2001, 26 (04) :280-301
[8]  
On explosions of solutions to a system of partial differential equations modelling chemotaxis[J] . W. J&auml,ger. tran . 1992 (2)
[9]  
Symmetrization in a parabolic-elliptic system related to chemotaxis .2 Jesus Ildefonso Diaz,Toshitaka Nagai. Adv. Math. Sci. Appl . 1995
[10]  
On existence of local solutions of a moving boundary problem modelling chemotaxis in1-D .2 Wu S.H,Yue.B. J.Partial Differential Equations . 2014