Aerosol light absorption in a coastal city in Southeast China:Temporal variations and implications for brown carbon

被引:8
|
作者
Yuqing Qiu [1 ,2 ,3 ]
Xin Wu [1 ,2 ,3 ]
Yanru Zhang [1 ,2 ,3 ]
Lingling Xu [1 ,2 ]
Youwei Hong [1 ,2 ]
Jinsheng Chen [1 ,2 ]
Xiaoqiu Chen [4 ]
Junjun Deng [1 ,2 ,5 ]
机构
[1] Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences
[2] Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences
[3] University of Chinese Academy of Sciences
[4] Fujian Environmental Monitoring Station
[5] Institute of Surface-Earth System Science, Tianjin University
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Light absorption; Brown carbon; Black carbon; Absorption Angstrom exponent; Biomass burning; Western Taiwan Strait;
D O I
暂无
中图分类号
X513 [粒状污染物];
学科分类号
0706 ; 070602 ;
摘要
Light-absorbing carbonaceous aerosols including black carbon(BC) and brown carbon(BrC)play significant roles in atmospheric radiative properties. One-year measurements of aerosol light absorption at multi-wavelength were continuously conducted in Xiamen,southeast of China in 2014 to determine the light absorption properties including absorption coefficients(σabs) and absorption ?ngstr?m exponent(AAE) in the coastal city.Light absorptions of BC and BrC with their contributions to total light absorption were further quantified. Mean σabsat 370 nm and 880 nm were 56.6 ± 34.3 and 16.5 ± 11.2 Mm-1,respectively. σabspresented a double-peaks diurnal pattern with the maximum in the morning and the minimum in the afternoon. σabswas low in warm seasons and high in cold seasons. AAE ranged from 0.26 to 2.58 with the annual mean of 1.46, implying that both fossil fuel combustion and biomass burning influenced aerosol optical properties. σabsof BrC at 370 nm was 24.0 ± 5.7 Mm-1, contributing 42% to the total absorption. The highest AAE(1.52 ± 0.02) and largest BrC contributions(47% ± 4%) in winter suggested the significant influence of biomass burning on aerosol light absorption. Long-distance air masses passing through North China Plain and the Yangtze River Delta led to high AAE and BrC contributions. High AAE value of 1.46 in July indicated that long-range transport of the air pollutants from intense biomass burning in Southeast Asia would affect aerosol light absorption in Southeast China. The study will improve the understanding of light absorption properties of aerosols and the optical impacts of BrC in China.
引用
收藏
页码:257 / 266
页数:10
相关论文
共 50 条
  • [1] Aerosol light absorption in a coastal city in Southeast China: Temporal variations and implications for brown carbon
    Qiu, Yuqing
    Wu, Xin
    Zhang, Yanru
    Xu, Lingling
    Hong, Youwei
    Chen, Jinsheng
    Chen, Xiaoqiu
    Deng, Junjun
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2019, 80 : 257 - 266
  • [2] Brown carbon aerosol in two megacities in the Sichuan Basin of southwestern China: Light absorption properties and implications
    Peng, Chao
    Yang, Fumo
    Tian, Mi
    Shi, Guangming
    Li, Li
    Huang, Ru-Jin
    Yao, Xiaojiang
    Luo, Bin
    Zhai, Chongzhi
    Chen, Yang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 719
  • [3] Modeling Investigation of Brown Carbon Aerosol and Its Light Absorption in China
    Zhu, Yong
    Wang, Qiaoqiao
    Yang, Xiajie
    Yang, Ning
    Wang, Xurong
    ATMOSPHERE, 2021, 12 (07)
  • [4] Constraining Light Absorption of Brown Carbon in China and Implications for Aerosol Direct Radiative Effect
    Xu, Lulu
    Lin, Guangxing
    Liu, Xiaohong
    Wu, Chenglai
    Wu, Yunfei
    Lou, Sijia
    GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (16)
  • [5] Light absorption of brown carbon aerosol in the PRD region of China
    Yuan, J. -F.
    Huang, X. -F.
    Cao, L. -M.
    Cui, J.
    Zhu, Q.
    Huang, C. -N.
    Lan, Z. -J.
    He, L. -Y.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (03) : 1433 - 1443
  • [6] Contribution of particulate brown carbon to light absorption in the rural and urban Southeast US
    Devi, J. Jai
    Bergin, Michael H.
    Mckenzie, Michael
    Schauer, James J.
    Weber, Rodney J.
    ATMOSPHERIC ENVIRONMENT, 2016, 136 : 95 - 104
  • [7] Light Absorption Properties of Brown Carbon Aerosol During Winter at a Polluted Rural Site in the North China Plain
    Tao, Yanan
    Yang, Zheng
    Tan, Xinyu
    Cheng, Peng
    Wu, Cheng
    Li, Mei
    Sun, Yele
    Ma, Nan
    Dong, Yawei
    Zhang, Jiayin
    Du, Tao
    ATMOSPHERE, 2024, 15 (11)
  • [8] Brown carbon light absorption over an urban environment in northern peninsular Southeast Asia
    Pani, Shantanu Kumar
    Lin, Neng-Huei
    Griffith, Stephen M.
    Chantara, Somporn
    Lee, Chung-Te
    Thepnuan, Duangduean
    Tsai, Ying, I
    ENVIRONMENTAL POLLUTION, 2021, 276
  • [9] Brown Carbon Aerosol in Urban Xi'an, Northwest China: The Composition and Light Absorption Properties
    Huang, Ru-Jin
    Yang, Lu
    Cao, Junji
    Chen, Yang
    Chen, Qi
    Li, Yongjie
    Duan, Jing
    Zhu, Chongshu
    Dai, Wenting
    Wang, Kai
    Lin, Chunshui
    Ni, Haiyan
    Corbin, Joel C.
    Wu, Yunfei
    Zhang, Renjian
    Tie, Xuexi
    Hoffmann, Thorsten
    O'Dowd, Colin
    Dusek, Uli
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (12) : 6825 - 6833
  • [10] Aerosol optical properties and brown carbon in Mexico City
    Retama, Armando
    Ramos-Ceron, Mariana
    Rivera-Hernandez, Olivia
    Allen, George
    Velasco, Erik
    ENVIRONMENTAL SCIENCE-ATMOSPHERES, 2022, 2 (03): : 315 - 334