THE CAUCHY PROBLEMS FOR DISSIPATIVE HYPERBOLIC MEAN CURVATURE FLOW

被引:0
|
作者
Shixia Lv [1 ]
Zenggui Wang [1 ]
机构
[1] School of Mathematical Sciences, Liaocheng University
基金
美国国家科学基金会;
关键词
dissipative hyperbolic mean curvature flow; hyperbolic MongeAmpère equation; lifespan;
D O I
暂无
中图分类号
O186.1 [微分几何];
学科分类号
摘要
In this paper, we investigate initial value problems for hyperbolic mean curvature flow with a dissipative term. By means of support functions of a convex curve, a hyperbolic Monge-Amp`ere equation is derived, and this equation could be reduced to the first order quasilinear systems in Riemann invariants. Using the theory of the local solutions of Cauchy problems for quasilinear hyperbolic systems, we discuss lower bounds on life-span of classical solutions to Cauchy problems for dissipative hyperbolic mean curvature flow.
引用
收藏
页码:159 / 179
页数:21
相关论文
共 50 条
  • [1] The Cauchy problem of dissipative hyperbolic mean curvature flow
    Xia, Shuangshuang
    Wang, Zenggui
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (11) : 9409 - 9421
  • [2] Dissipative hyperbolic mean curvature flow for closed convex plane curves
    Wang, Zenggui
    Lv, Shixia
    Zhao, Bin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (05)
  • [3] The hyperbolic mean curvature flow
    LeFloch, Philippe G.
    Smoczyk, Knut
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (06): : 591 - 614
  • [4] Hyperbolic mean curvature flow
    He, Chun-Lei
    Kong, De-Xing
    Liu, Kefeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) : 373 - 390
  • [5] Hyperbolic flow by mean curvature
    Rotstein, Horacio G.
    Brandon, Simon
    Novick-Cohen, Amy
    Journal of Crystal Growth, 1999, 198-199 (pt 2): : 1256 - 1261
  • [6] Hyperbolic flow by mean curvature
    Rotstein, HG
    Brandon, S
    Novick-Cohen, A
    JOURNAL OF CRYSTAL GROWTH, 1999, 198 : 1256 - 1261
  • [7] Hyperbolic Inverse Mean Curvature Flow
    Mao, Jing
    Wu, Chuan-Xi
    Zhou, Zhe
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (01) : 33 - 66
  • [8] Hyperbolic Inverse Mean Curvature Flow
    Jing Mao
    Chuan-Xi Wu
    Zhe Zhou
    Czechoslovak Mathematical Journal, 2020, 70 : 33 - 66
  • [9] Mean curvature flow of a hyperbolic surface
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 2011, 113 : 1063 - 1070
  • [10] Mean Curvature Flow of a Hyperbolic Surface
    Ovchinnikov, Yu. N.
    Sigal, I. M.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2011, 113 (06) : 1063 - 1070