PARTIAL REGULARITY FOR WEAK SOLUTIONS OF STATIONARY NAVIER-STOKES SYSTEMS

被引:0
作者
陈淑红 [1 ]
潭忠 [1 ]
机构
[1] School of Mathematical Science,Xiamen University
关键词
Navier-Stokes system; A-harmonic approximation; regularity;
D O I
暂无
中图分类号
O175.24 [数理方程];
学科分类号
070104 ;
摘要
This article is concerned with the partial regularity for the weak solutions of stationary Navier-Stokes system under the controllable growth condition.By A-harmonic approximation technique,the optimal regularity is obtained.
引用
收藏
页码:877 / 894
页数:18
相关论文
共 30 条
[1]  
Optimal interior partial regularity for nonlinear elliptic systems under thenatural growth condition:the method of A-harmonic approximation. Chen Shuhong,Tan Zhong. Acta Mathematica Scientia . 2007
[2]  
Equazioni ellittiche del II o ordine e spazi \mathfrak{L}^{(2,\lambda )} .[J] . Sergio Campanato. &nbspAnnali di Matematica Pura ed Applicata, Series 4 . 1965 (1)
[3]  
The L p -integrability of the partial derivatives of A quasiconformal mapping[J] . F. W. Gehring. &nbspActa Mathematica . 1973 (1)
[4]  
On uniqueness questions in the theory of viscous flow[J] . John G. Heywood. &nbspActa Mathematica . 1976 (1)
[5]  
Optimal interior partial regularity?for nonlinear elliptic systems: the method of A-harmonic approximation[J] . Frank Duzaar,Joseph F. Grotowski. &nbspmanuscripta mathematica . 2000 (3)
[6]  
The Lp-integrability of the partial derivatives of a quasiconformal mapping. GEHRING F W. Acta Mathematica . 1973
[7]  
Partial regularity for almost-minimizers of quasi-convex integrals. Duzaar F,Gastel A,Grotowski J. SIAM Journal on Mathematical Analysis . 2000
[8]  
Optimal interior and boundary regularity for almost minimal currents to elliptic integrands. Duzaar F,Steffen K. Journal fur die Reine und Angewandte Mathematik . 2000
[9]  
Interior estimates for elliptic systems of partial differential equations. A.Douglis,and L.Nirenberg. Communications in Pure Applied Mathematics . 1955
[10]  
Un esempio di estremali discontinue per un problem variazionale di upo ellitico. E.De Giorgi. Boll.UMI . 1968