AN UPBOUND OF HAUSDORFF'S DIMENSION OF THE DIVERGENCE SET OF THE FRACTIONAL SCHR(O|")DINGER OPERATOR ON H~s(R~n)

被引:0
|
作者
李丹 [1 ]
李俊峰 [2 ]
肖杰 [3 ]
机构
[1] School of Mathematics and Statistics,Beijing Technology and Business University
[2] School of Mathematical Sciences,Dalian University of Technology
[3] Department of Mathematics and Statistics,Memorial University
基金
加拿大自然科学与工程研究理事会;
关键词
The Carleson problem; divergence set; the fractional Schr?dinger operator; Hausdorff dimension; Sobolev space;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
Given n> 2 and α> 1/2,we obtained an improved upbound of Hausdorff’s dimension of the fractional Schrodinger operator;that is,■ for ■.
引用
收藏
页码:1223 / 1249
页数:27
相关论文
共 2 条
  • [1] An Upbound of Hausdorff’s Dimension of the Divergence Set of the Fractional SchröDinger Operator On Hs(ℝn)
    Dan Li
    Junfeng Li
    Jie Xiao
    Acta Mathematica Scientia, 2021, 41 : 1223 - 1249
  • [2] AN UPBOUND OF HAUSDORFF'S DIMENSION OF THE DIVERGENCE SET OF THE FRACTIONAL SCHRODINGER OPERATOR ON Hs(Rn)*
    Li, Dan
    Li, Junfeng
    Xiao, Jie
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (04) : 1223 - 1249