Time-series gas prediction model using LS-SVR within a Bayesian framework

被引:9
作者
Qiao Meiying~(a
机构
基金
中国国家自然科学基金;
关键词
Bayesian framework; LS-SVR; Time-series; Gas prediction;
D O I
暂无
中图分类号
TD713 [煤(岩石)与瓦斯突出的预防和处理];
学科分类号
081903 ;
摘要
The traditional least squares support vector regression(LS-SVR)model,using cross validation to determine the regularization parameter and kernel parameter,is time-consuming.We propose a Bayesian evidence framework to infer the LS-SVR model parameters.Three levels Bayesian inferences are used to determine the model parameters,regularization hyper-parameters and tune the nuclear parameters by model comparison.On this basis,we established Bayesian LS-SVR time-series gas forecasting models and provide steps for the algorithm.The gas outburst data of a Hebi 10th mine working face is used to validate the model.The optimal embedding dimension and delay time of the time series were obtained by the smallest differential entropy method.Finally,within a MATLAB7.1 environment,we used actual coal gas data to compare the traditional LS-SVR and the Bayesian LS-SVR with LS-SVMlab1.5 Toolbox simulation.The results show that the Bayesian framework of an LS-SVR significantly improves the speed and accuracy of the forecast.
引用
收藏
页码:153 / 157
页数:5
相关论文
共 9 条
[1]   Catastrophic mechanism of coal and gas outbursts and their prevention and control [J].
LI S. ;
ZHANG T. .
Mining Science and Technology, 2010, 20 (02) :209-214
[2]   煤与瓦斯突出预测的改进差分进化神经网络模型研究 [J].
杨敏 ;
汪云甲 ;
程远平 .
中国矿业大学学报, 2009, 38 (03) :439-444
[3]   On-line least squares support vector machine algorithm in gas prediction [J].
ZHAO, Xiao-hu ;
WANG, Gang ;
ZHAO, Ke-ke ;
TAN, De-jian .
Mining Science and Technology, 2009, 19 (02) :194-198
[4]   基于最小二乘支持向量机的选煤厂日用水量短期预测 [J].
郭小荟 ;
马小平 .
煤炭学报, 2007, (10) :1093-1097
[5]   煤与瓦斯突出动态前兆的非线性特征研究 [J].
王凯 ;
王轶波 ;
卢杰 .
采矿与安全工程学报, 2007, (01) :22-26
[6]   基于贝叶斯最小二乘支持向量机的时用水量预测模型 [J].
陈磊 ;
张土乔 .
天津大学学报, 2006, (09) :1037-1042
[7]   工作面煤与瓦斯突出电磁辐射的神经网络预测方法研究 [J].
撒占友 ;
何学秋 ;
王恩元 .
煤炭学报, 2004, (05) :563-567
[8]  
Bayesian Framework for Least-Squares Support Vector Machine Classifiers, Gaussian Processes, and Kernel Fisher Discriminant Analysis[J] . T. Van Gestel,J. A. K. Suykens,G. Lanckriet,A. Lambrechts,B. De Moor,J. Vandewalle.Neural Computation . 2002 (5)
[9]   Least squares support vector machine classifiers [J].
Suykens, JAK ;
Vandewalle, J .
NEURAL PROCESSING LETTERS, 1999, 9 (03) :293-300