TWO-WEIGHT WEAK-TYPE MAXIMAL INEQUALITIES FOR MARTINGALES

被引:0
作者
任颜波 [1 ]
侯友良 [2 ]
机构
[1] Department of Mathematics & Physics,Henan University of Science and Technology
[2] School of Mathematics and Statistics,Wuhan University
关键词
Martingale; weight; weak-type inequality; Young function;
D O I
暂无
中图分类号
O178 [不等式及其他];
学科分类号
0701 ; 070101 ;
摘要
In this article,some necessary and sufficient conditions are shown in order that the inequality of the form Φ1(λ)Pu(f> λ) ≤ Ev(Φ2(C|f∞|)) holds with some constant C > 0 independent of martingale f =(fn)n≥0 and λ > 0,where Φ1 and Φ2 are a pair of Young functions,f = sup n≥0 |fn| and f∞ = lim n→∞ fn a.e.
引用
收藏
页码:402 / 408
页数:7
相关论文
共 10 条
[1]  
Two weight -inequalities for the Hardy operator, Hardy-Littlewood maximal operator and fractional integrals. Lai Quinsheng. Proceedings of the American Mathematical Society . 1993
[2]  
Martingale Spaces and Inequalities. Long R L. . 1993
[3]  
Necessary and sufficient conditions for weighted Orlicz class inequalities for maximal functions and singular integrals. I. Gogatishvili,A.,Kokilashvili,V. Georgian Mathematical Journal . 1995
[4]  
Martingale Hardy spaces and their applications in Fourier analysis. Weisz F. Lecture Notes in Mathematics . 1994
[5]  
Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator. Bloom S,Kerman R. Studia Mathematica . 1994
[6]  
Necessary and sufficient conditions for weighted Orlicz class inequalities for maximal functions and singular integrals. I[J] . A. Gogatishvili,V. Kokilashvili. &nbspGeorgian Mathematical Journal . 1995 (4)
[7]  
On weighted weak type maximal inequalities for martingales. Kikuchi M. Math Inequalities Appl . 2003
[8]  
Weighted inequalities for the geometric maximal operator on martingale spaces. Zuo Hongliang,Liu Peide. Acta Mathematica . 2008
[9]  
Two-weight weak. type maximal inequalities in Orlicz classes. Pick,L. Studia Mathematica . 1991
[10]  
WeighteelLΦintegralinequalitiesforoperatorsofHardytype. BloomS,KermanR. StudiaM . 1994