A stochastic epidemic model on homogeneous networks

被引:0
作者
刘茂省 [1 ,2 ]
阮炯 [2 ]
机构
[1] Department of Mathematics,North University of China
[2] School of Mathematical Sciences,Fudan University
关键词
homogeneous networks; SIS epidemic model; stochastic stability; stochastic bifurcation;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper,a stochastic SIS epidemic model on homogeneous networks is considered.The largest Lyapunov exponent is calculated by Oseledec multiplicative ergodic theory,and the stability condition is determined by the largest Lyapunov exponent.The probability density function for the proportion of infected individuals is found explicitly,and the stochastic bifurcation is analysed by a probability density function.In particular,the new basic reproductive number R,that governs whether an epidemic with few initial infections can become an endemic or not,is determined by noise intensity.In the homogeneous networks,despite of the basic productive number R 0 > 1,the epidemic will die out as long as noise intensity satisfies a certain condition.
引用
收藏
页码:5111 / 5116
页数:6
相关论文
共 22 条
  • [1] Yang R,Wang B H,Ren J,Bai W J,Shi Z W,Xu W,Zhou T. Physics Letters A . 2007
  • [2] Allen L J S,Burgin A M. Mathematical Biosciences . 2000
  • [3] Roberts M G,Saha A K. Applied Mathematics Letters . 1999
  • [4] Random Dynamical Systems. Arnold L. . 1998
  • [5] Newman M E J. Phys.Rev.E . 2002
  • [6] Epidemic spreading in scale-free networks. Pastor-Satorras R,Vespignani A. Physics Review Letters . 2001
  • [7] A multiplicative ergodic theorem. Liapunov characteristic numbers for dynamical systems. V. Oseledets. Trans. Mosc. Math. Soc . 1968
  • [8] Pastor-Satorras R,and Vespignani A. Phys.Rev.E . 2001
  • [9] May R M,and Lloyd A L. Physical Review E Statistical Nonlinear and Soft Matter Physics . 2001
  • [10] Hayashi Y,Minoura M,Matsukubo J. Physical Review E Statistical Nonlinear and Soft Matter Physics . 2004