One Fire Detection Method Using Neural Networks

被引:10
作者
程彩霞
孙富春
周心权
机构
[1] State Key Laboratory of Coal Resources and Mine Safety,China University of Mining and Technology(Beijing)
[2] State Key Laboratory of Intelligent Technology and Systems,Department of Computer Science and Technology,Tsinghua University
关键词
fire detection; neural network; multi-sensor information fusion; simulation;
D O I
暂无
中图分类号
TP18 [人工智能理论]; TU998.1 [消防];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ; 0306 ; 0837 ; 0838 ;
摘要
A neural network fire detection method was developed using detection information for temperature,smoke density,and CO concentration to determine the probability of three representative fire conditions.The method overcomes the shortcomings of domestic fire alarm systems using single sensor information.Test results show that the identification error rates for fires,smoldering fires,and no fire are less than 5%,which greatly reduces leak-check rates and false alarms.This neural network fire alarm system can fuse a variety of sensor data and improve the ability of systems to adapt in the environment and accurately predict fires,which has great significance for life and property safety.
引用
收藏
页码:31 / 35
页数:5
相关论文
共 4 条
[1]   人工神经网络BP算法在评价网站中的应用 [J].
陆伟华 .
科技情报开发与经济, 2007, (06) :170-172
[2]   基于模糊-神经网络的火灾报警监测系统研究 [J].
臧小杰 ;
王焱 ;
罗云林 ;
宋绍楼 .
煤炭学报, 2000, (03) :283-286
[3]   Fire detection using smoke and gas sensors [J].
Chen, Shin-Juh ;
Hovde, David C. ;
Peterson, Kristen A. ;
Marshall, Andre W. .
FIRE SAFETY JOURNAL, 2007, 42 (08) :507-515
[4]   Monitoring multiple aspects of fire signatures for discriminating fire detection [J].
Milke, JA .
FIRE TECHNOLOGY, 1999, 35 (03) :195-209